Jacobian variety

In mathematics, the Jacobian variety J(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C, hence an abelian variety.

Introduction

The Jacobian variety is named after Carl Gustav Jacobi, who proved the complete version of the Abel–Jacobi theorem, making the injectivity statement of Niels Abel into an isomorphism. It is a principally polarized abelian variety, of dimension g, and hence, over the complex numbers, it is a complex torus. If p is a point of C, then the curve C can be mapped to a subvariety of J with the given point p mapping to the identity of J, and C generates J as a group.

Construction for complex curves

Over the complex numbers, the Jacobian variety can be realized as the quotient space V/L, where V is the dual of the vector space of all global holomorphic differentials on C and L is the lattice of all elements of V of the form

where γ is a closed path in C. In other words,

with embedded in via the above map. This can be done explicitly with the use of theta functions.[1]

The Jacobian of a curve over an arbitrary field was constructed by Weil (1948) as part of his proof of the Riemann hypothesis for curves over a finite field.

The Abel–Jacobi theorem states that the torus thus built is a variety, the classical Jacobian of a curve, that indeed parametrizes the degree 0 line bundles, that is, it can be identified with its Picard variety of degree 0 divisors modulo linear equivalence.

Algebraic structure

As a group, the Jacobian variety of a curve is isomorphic to the quotient of the group of divisors of degree zero by the subgroup of principal divisors, i.e., divisors of rational functions. This holds for fields that are not algebraically closed, provided one considers divisors and functions defined over that field.

Further notions

Torelli's theorem states that a complex curve is determined by its Jacobian (with its polarization).

The Schottky problem asks which principally polarized abelian varieties are the Jacobians of curves.

The Picard variety, the Albanese variety, generalized Jacobian, and intermediate Jacobians are generalizations of the Jacobian for higher-dimensional varieties. For varieties of higher dimension the construction of the Jacobian variety as a quotient of the space of holomorphic 1-forms generalizes to give the Albanese variety, but in general this need not be isomorphic to the Picard variety.

See also

References

  1. ^ Mumford, David (2007). Tata lectures on Theta I. Birkhäuser. ISBN 978-0-8176-4572-4.

Computation techniques

Isogeny classes

Cryptography

General

Read other articles:

American politician For the American cartoonist, see Charles Henry Sykes. Charles H. Sykes Charles H. Sykes (January 11, 1881 – December 5, 1966) was a member of the Wisconsin State Assembly.[1] Life Sykes was born on January 11, 1881, in Brodhead, Wisconsin.[2][3] After graduating from Milton Junction High School, he attended Janesville Business College.[2] Sykes died in a hospital in Youngtown, Arizona.[2] Political career Sykes was a member of the ...

 

Penyaliran bawah tanah kota Sydney di New South Wales, Australia Drainase, penyaliran, pengatusan, atau pematusan adalah pembuangan massa air secara alami atau buatan dari permukaan atau bawah permukaan dari suatu tempat. Pembuangan ini dapat dilakukan dengan mengalirkan, menguras, membuang, atau mengalihkan air.[1] Drainase merupakan bagian penting dalam penataan sistem air di bidang tata ruang. Dalam lingkup rekayasa sipil, drainase dibatasi sebagai serangkaian bangunan air yang ber...

 

Peta Lokasi Kabupaten Lima Puluh Kota di Sumatera Barat Berikut adalah daftar kecamatan dan kelurahan/desa di Kabupaten Lima Puluh Kota, Sumatera Barat, Indonesia. Kabupaten Lima Puluh Kota memiliki 13 kecamatan dan 79 nagari. Luas wilayahnya mencapai 3.571,14 km² dan penduduk 374.067 jiwa (2017) dengan sebaran 105 jiwa/km².[1][2] Daftar kecamatan dan kelurahan di Kabupaten Lima Puluh Kota, adalah sebagai berikut: Kode Kemendagri Kecamatan Jumlah Status Daftar 13.07.13 Akabi...

Administrative entry restrictions This article is part of a series on thePolitics of the United Arab Emirates Federal government Constitution of the United Arab Emirates Human rights Taxation Legislature Federal Supreme Council Current members Federal National Council Speaker Saqr Ghobash Executive President of the United Arab Emirates Mohammed bin Zayed Al Nahyan Vice Presidents of the United Arab Emirates Mohammed bin Rashid Al Maktoum Mansour bin Zayed Al Nahyan Prime Minister Mohammed bin...

 

12 HariPosterGenre Drama Laga Kriminal Skenario Samuel Rustandi Satrio Wibowo CeritaReza Levinus NanginSutradaraPrisia NasutionPengarah kreatif Raymon Budiman Gultom Muhammad Aldo Prahajanto Clarissa Tanoesudibjo Lukman Sardi Pemeran Yoga Pratama Hana Malasan Verdi Solaiman Edward Akbar Iedil Dzuhrie Alaudin Williem Bevers Whani Darmawan Asri Welas Unique Priscilla MusikSadrach LukasNegara asal IndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode12ProduksiProduser Reza Levinus ...

 

Halaman ini berisi artikel tentang Keuskupan Pala di Chad. Untuk Keuskupan Pala di India, lihat Eparki Palai. Katedral Pala Keuskupan Pala (bahasa Latin: Palaën(sis)) adalah sebuah keuskupan di Pala, provinsi gerejawi N'Djamena, Chad. Riwayat 19 Desember 1956: Didirikan sebagai Prefektur Apostolik Pala dari Keuskupan Garoua di Kamerun 1964: Dipromosikan sebagai Keuskupan Pala Sumber GCatholic.org Koordinat: 9°21′30″N 14°54′10″E / 9.3582°N 14.9027°E / 9...

Disambiguazione – Se stai cercando Nicolò Tron (1685-1771), ambasciatore, politico e imprenditore veneto, vedi Nicolò Tron (politico e imprenditore). Questa voce o sezione sull'argomento sovrani italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Nicolò TronDoge di VeneziaStemma In carica1471 –1473 PredecessoreCristoforo Moro EredeFilipp...

 

Thai noodle soup Khao soiChicken khao soi with fermented vegetables, Chiang Mai Province, ThailandAlternative namesKhao soyTypeNoodle soupRegion or stateNorthern Thailand, Northern Laos, and MyanmarAssociated cuisineMyanmar, Laos and ThailandCreated byChin HawMain ingredientsHand-cut rice or egg noodles, coconut milk, curry soup baseVariationsNorthern Thai khao soi, Lao khao soiSimilar dishesOhn no khao swè  Media: Khao soi Khao soi or khao soy (Thai: ข้าวซอย, pronounc...

 

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒...

Village in Dorset, England Human settlement in EnglandMelbury OsmondParish church of St OsmundMelbury OsmondLocation within DorsetPopulation199 [1]OS grid referenceST574077Unitary authorityDorsetShire countyDorsetRegionSouth WestCountryEnglandSovereign stateUnited KingdomPost townDorchesterPostcode districtDT2PoliceDorsetFireDorset and WiltshireAmbulanceSouth Western UK ParliamentWest Dorset List of places UK England Dorset 50°52′03″N 2°36...

 

NFL team season 1979 Detroit Lions seasonHead coachMonte ClarkHome fieldPontiac SilverdomeResultsRecord2–14Division place5th NFC CentralPlayoff finishDid not qualifyPro BowlersTE David HillDE Al BakerAP All-Prosnone ← 1978 Lions seasons 1980 → The 1979 Detroit Lions season was the 50th season in franchise history. In the midst of a major rebuilding project, the woeful Lions finished the season with a 2–14 record, equal-worst record in the NFL and a tiebreaker wi...

 

العلاقات الصينية الغانية الصين غانا   الصين   غانا تعديل مصدري - تعديل   العلاقات الصينية الغانية هي العلاقات الثنائية التي تجمع بين الصين وغانا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة الصين غانا المساح...

Russian Orthodox church in Armenia Church of the Intercession of the Holy Mother of GodՍուրբ Տիրամոր ԵկեղեցիХрам Покрова Пресвятой БогородицыChurch of the Intercession of the Holy Mother of God, Kanaker, YerevanReligionAffiliationRussian Orthodox ChurchDistrictKanaker-ZeytunRegionYerevanEcclesiastical or organizational statusactiveYear consecrated1912LocationLocationZakaria Kanakertsi street, Yerevan, ArmeniaShown within ArmeniaGeographic coord...

 

Russian oil and gas company Gazprom PJSCGazprom's headquarters in the Lakhta Center in Saint Petersburg, the tallest building in EuropeNative nameПАО ГазпромCompany typeState-owned company Public (PAO)Traded asMCX: GAZPIndustryOil and gasFounded8 August 1989; 34 years ago (1989-08-08)HeadquartersLakhta Centre, Saint Petersburg, RussiaKey peopleViktor Zubkov (Chairman)Alexey Miller (CEO)ProductsPetroleumNatural gasPetrochemicalsServicesGas pipeline transportRev...

 

Pandemic of HIV/AIDS This article needs to be updated. The reason given is: Many sections seem to have been written around or before 2010. Please help update this article to reflect recent events or newly available information. (July 2023) HIV/AIDS EpidemicA world map illustrating the proportion of population infected with HIV in 2019 DiseaseHIV/AIDSVirus strainHIVSourceNon-human primates[1]LocationWorldwideFirst outbreakJune 5, 1981[2]Date1981 (1981) – present (43 ...

Palace in Coburg, GermanyEhrenburg PalaceSchloss EhrenburgEhrenburg PalaceLocation of Ehrenburg in GermanyShow map of BavariaEhrenburg Palace (Germany)Show map of GermanyGeneral informationTypePalaceArchitectural styleGothic Revival styleTown or cityCoburgCountryGermanyCoordinates50°15′29″N 10°58′02″E / 50.258056°N 10.967222°E / 50.258056; 10.967222Construction started1543Completed1547Renovated1699, 19th centuryClientJohann Ernst, Herzog von Sachsen-CoburgO...

 

Subgenus of plants, the banyans This article is about the tree. For other uses, see Banyan (disambiguation). This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (April 2020) (Learn how and when to remove this message) Banyan Banyan with characteristic adventitious prop roots Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosper...

 

American politician & military officer (born 1961) Allen WestChair of the Texas Republican PartyIn officeJuly 20, 2020 – July 11, 2021Preceded byJames DickeySucceeded byMatt RinaldiMember of the U.S. House of Representativesfrom Florida's 22nd districtIn officeJanuary 3, 2011 – January 3, 2013Preceded byRon KleinSucceeded byLois Frankel Personal detailsBornAllen Bernard West (1961-02-07) February 7, 1961 (age 63)Atlanta, Georgia, U.S.Political partyR...

Prison in Florida, U.S. Florida State PrisonLocationBradford CountyCoordinates30°03′31″N 82°11′08″W / 30.0585°N 82.1856°W / 30.0585; -82.1856StatusOperationalSecurity classCommunity, Minimum, Medium, Close and MaximumCapacity1,460Opened1961Managed byFlorida Department of CorrectionsGovernorRon DeSantisWardenDonald DavisStreet address23916 NW 83rd Ave.CityNone (Raiford postal address)CountyBradfordState/provinceFloridaCountry United StatesWebsitedc.stat...

 

この項目では、楽器について説明しています。その他の用法については「フルート (曖昧さ回避)」をご覧ください。 フルート 各言語での名称 英 flute 独 Flöte, Querflöte 仏 flûte, flûte traversière 伊 flauto, flauto traverso 中 长笛(簡体字) 長笛(繁体字) 分類 木管楽器 - 無簧開管楽器 - フルート属 気鳴楽器 - 刃型付吹奏楽器 - 無隙溝型フルート - 開管単式横吹きフルート 音...