One of the motivations for analyzing stable vector bundles is their nice behavior in families. In fact, Moduli spaces of stable vector bundles can be constructed using the Quot scheme in many cases, whereas the stack of vector bundles is an Artin stack whose underlying set is a single point.
Here's an example of a family of vector bundles which degenerate poorly. If we tensor the Euler sequence of by there is an exact sequence
which represents a non-zero element [2] since the trivial exact sequence representing the vector is
If we consider the family of vector bundles in the extension from for , there are short exact sequences
which have Chern classes generically, but have at the origin. This kind of jumping of numerical invariants does not happen in moduli spaces of stable vector bundles.[3]
for all proper non-zero subbundles V of W
and is semistable if
for all proper non-zero subbundles V of W. Informally this says that a bundle is stable if it is "more ample" than any proper subbundle, and is unstable if it contains a "more ample" subbundle.
If W and V are semistable vector bundles and μ(W) >μ(V), then there are no nonzero maps W → V.
for all proper non-zero subbundles (or subsheaves) V of W, where χ denotes the Euler characteristic of an algebraic vector bundle and the vector bundle V(nH) means the n-th twist of V by H. W is called semistable if the above holds with < replaced by ≤.
Slope stability
For bundles on curves the stability defined by slopes and by growth of Hilbert polynomial coincide. In higher dimensions, these two notions are different and have different advantages. Gieseker stability has an interpretation in terms of geometric invariant theory, while μ-stability has better properties for tensor products, pullbacks, etc.
where c1 is the first Chern class. The dependence on H is often omitted from the notation.
A torsion-free coherent sheaf E is μ-semistable if for any nonzero subsheaf F ⊆ E the slopes satisfy the inequality μ(F) ≤ μ(E). It's μ-stable if, in addition, for any nonzero subsheaf F ⊆ E of smaller rank the strict inequality μ(F) < μ(E) holds. This notion of stability may be called slope stability, μ-stability, occasionally Mumford stability or Takemoto stability.
For a vector bundle E the following chain of implications holds: E is μ-stable ⇒ E is stable ⇒ E is semistable ⇒ E is μ-semistable.
Let E be a vector bundle over a smooth projective curve X. Then there exists a unique filtration by subbundles
such that the associated graded components Fi := Ei+1/Ei are semistable vector bundles and the slopes decrease, μ(Fi) > μ(Fi+1). This filtration was introduced in Harder & Narasimhan (1975) and is called the Harder-Narasimhan filtration. Two vector bundles with isomorphic associated gradeds are called S-equivalent.
On higher-dimensional varieties the filtration also always exist and is unique, but the associated graded components may no longer be bundles. For Gieseker stability the inequalities between slopes should be replaced with inequalities between Hilbert polynomials.
Kobayashi and Hitchin conjectured an analogue of this in higher dimensions. It was proved for projective nonsingular surfaces by Donaldson (1985), who showed that in this case a vector bundle is stable if and only if it has an irreducible Hermitian–Einstein connection.
Generalizations
It's possible to generalize (μ-)stability to non-smooth projective schemes and more general coherent sheaves using the Hilbert polynomial. Let X be a projective scheme, d a natural number, E a coherent sheaf on X with dim Supp(E) = d. Write the Hilbert polynomial of E as PE(m) = Σd i=0 αi(E)/(i!) mi. Define the reduced Hilbert polynomialpE := PE/αd(E).
A coherent sheaf E is semistable if the following two conditions hold:[4]
E is pure of dimension d, i.e. all associated primes of E have dimension d;
for any proper nonzero subsheaf F ⊆ E the reduced Hilbert polynomials satisfy pF(m) ≤ pE(m) for large m.
A sheaf is called stable if the strict inequality pF(m) < pE(m) holds for large m.
Let Cohd(X) be the full subcategory of coherent sheaves on X with support of dimension ≤ d. The slope of an object F in Cohd may be defined using the coefficients of the Hilbert polynomial as if αd(F) ≠ 0 and 0 otherwise. The dependence of on d is usually omitted from the notation.
A coherent sheaf E with is called μ-semistable if the following two conditions hold:[5]
the torsion of E is in dimension ≤ d-2;
for any nonzero subobject F ⊆ E in the quotient category Cohd(X)/Cohd-1(X) we have .
E is μ-stable if the strict inequality holds for all proper nonzero subobjects of E.
Note that Cohd is a Serre subcategory for any d, so the quotient category exists. A subobject in the quotient category in general doesn't come from a subsheaf, but for torsion-free sheaves the original definition and the general one for d = n are equivalent.
Donaldson, S. K. (1985), "Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles", Proceedings of the London Mathematical Society, Third Series, 50 (1): 1–26, doi:10.1112/plms/s3-50.1.1, ISSN0024-6115, MR0765366
Mumford, David (1963), "Projective invariants of projective structures and applications", Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Djursholm: Inst. Mittag-Leffler, pp. 526–530, MR0175899
Mumford, David; Fogarty, J.; Kirwan, F. (1994), Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34 (3rd ed.), Berlin, New York: Springer-Verlag, ISBN978-3-540-56963-3, MR1304906 especially appendix 5C.