Stable vector bundle

In mathematics, a stable vector bundle is a (holomorphic or algebraic) vector bundle that is stable in the sense of geometric invariant theory. Any holomorphic vector bundle may be built from stable ones using Harder–Narasimhan filtration. Stable bundles were defined by David Mumford in Mumford (1963) and later built upon by David Gieseker, Fedor Bogomolov, Thomas Bridgeland and many others.

Motivation

One of the motivations for analyzing stable vector bundles is their nice behavior in families. In fact, Moduli spaces of stable vector bundles can be constructed using the Quot scheme in many cases, whereas the stack of vector bundles is an Artin stack whose underlying set is a single point.

Here's an example of a family of vector bundles which degenerate poorly. If we tensor the Euler sequence of by there is an exact sequence

[1]

which represents a non-zero element [2] since the trivial exact sequence representing the vector is

If we consider the family of vector bundles in the extension from for , there are short exact sequences

which have Chern classes generically, but have at the origin. This kind of jumping of numerical invariants does not happen in moduli spaces of stable vector bundles.[3]

Stable vector bundles over curves

A slope of a holomorphic vector bundle W over a nonsingular algebraic curve (or over a Riemann surface) is a rational number μ(W) = deg(W)/rank(W). A bundle W is stable if and only if

for all proper non-zero subbundles V of W and is semistable if

for all proper non-zero subbundles V of W. Informally this says that a bundle is stable if it is "more ample" than any proper subbundle, and is unstable if it contains a "more ample" subbundle.

If W and V are semistable vector bundles and μ(W) >μ(V), then there are no nonzero maps WV.

Mumford proved that the moduli space of stable bundles of given rank and degree over a nonsingular curve is a quasiprojective algebraic variety. The cohomology of the moduli space of stable vector bundles over a curve was described by Harder & Narasimhan (1975) using algebraic geometry over finite fields and Atiyah & Bott (1983) using Narasimhan-Seshadri approach.

Stable vector bundles in higher dimensions

If X is a smooth projective variety of dimension m and H is a hyperplane section, then a vector bundle (or a torsion-free sheaf) W is called stable (or sometimes Gieseker stable) if

for all proper non-zero subbundles (or subsheaves) V of W, where χ denotes the Euler characteristic of an algebraic vector bundle and the vector bundle V(nH) means the n-th twist of V by H. W is called semistable if the above holds with < replaced by ≤.

Slope stability

For bundles on curves the stability defined by slopes and by growth of Hilbert polynomial coincide. In higher dimensions, these two notions are different and have different advantages. Gieseker stability has an interpretation in terms of geometric invariant theory, while μ-stability has better properties for tensor products, pullbacks, etc.

Let X be a smooth projective variety of dimension n, H its hyperplane section. A slope of a vector bundle (or, more generally, a torsion-free coherent sheaf) E with respect to H is a rational number defined as

where c1 is the first Chern class. The dependence on H is often omitted from the notation.

A torsion-free coherent sheaf E is μ-semistable if for any nonzero subsheaf FE the slopes satisfy the inequality μ(F) ≤ μ(E). It's μ-stable if, in addition, for any nonzero subsheaf FE of smaller rank the strict inequality μ(F) < μ(E) holds. This notion of stability may be called slope stability, μ-stability, occasionally Mumford stability or Takemoto stability.

For a vector bundle E the following chain of implications holds: E is μ-stable ⇒ E is stable ⇒ E is semistable ⇒ E is μ-semistable.

Harder-Narasimhan filtration

Let E be a vector bundle over a smooth projective curve X. Then there exists a unique filtration by subbundles

such that the associated graded components Fi := Ei+1/Ei are semistable vector bundles and the slopes decrease, μ(Fi) > μ(Fi+1). This filtration was introduced in Harder & Narasimhan (1975) and is called the Harder-Narasimhan filtration. Two vector bundles with isomorphic associated gradeds are called S-equivalent.

On higher-dimensional varieties the filtration also always exist and is unique, but the associated graded components may no longer be bundles. For Gieseker stability the inequalities between slopes should be replaced with inequalities between Hilbert polynomials.

Kobayashi–Hitchin correspondence

Narasimhan–Seshadri theorem says that stable bundles on a projective nonsingular curve are the same as those that have projectively flat unitary irreducible connections. For bundles of degree 0 projectively flat connections are flat and thus stable bundles of degree 0 correspond to irreducible unitary representations of the fundamental group.

Kobayashi and Hitchin conjectured an analogue of this in higher dimensions. It was proved for projective nonsingular surfaces by Donaldson (1985), who showed that in this case a vector bundle is stable if and only if it has an irreducible Hermitian–Einstein connection.

Generalizations

It's possible to generalize (μ-)stability to non-smooth projective schemes and more general coherent sheaves using the Hilbert polynomial. Let X be a projective scheme, d a natural number, E a coherent sheaf on X with dim Supp(E) = d. Write the Hilbert polynomial of E as PE(m) = Σd
i=0
αi(E)/(i!) mi. Define the reduced Hilbert polynomial pE := PEd(E).

A coherent sheaf E is semistable if the following two conditions hold:[4]

  • E is pure of dimension d, i.e. all associated primes of E have dimension d;
  • for any proper nonzero subsheaf FE the reduced Hilbert polynomials satisfy pF(m) ≤ pE(m) for large m.

A sheaf is called stable if the strict inequality pF(m) < pE(m) holds for large m.

Let Cohd(X) be the full subcategory of coherent sheaves on X with support of dimension ≤ d. The slope of an object F in Cohd may be defined using the coefficients of the Hilbert polynomial as if αd(F) ≠ 0 and 0 otherwise. The dependence of on d is usually omitted from the notation.

A coherent sheaf E with is called μ-semistable if the following two conditions hold:[5]

  • the torsion of E is in dimension ≤ d-2;
  • for any nonzero subobject FE in the quotient category Cohd(X)/Cohd-1(X) we have .

E is μ-stable if the strict inequality holds for all proper nonzero subobjects of E.

Note that Cohd is a Serre subcategory for any d, so the quotient category exists. A subobject in the quotient category in general doesn't come from a subsheaf, but for torsion-free sheaves the original definition and the general one for d = n are equivalent.

There are also other directions for generalizations, for example Bridgeland's stability conditions.

One may define stable principal bundles in analogy with stable vector bundles.

See also

References

  1. ^ Note from the Adjunction formula on the canonical sheaf.
  2. ^ Since there are isomorphisms
  3. ^ Faltings, Gerd. "Vector bundles on curves" (PDF). Archived (PDF) from the original on 4 March 2020.
  4. ^ Huybrechts, Daniel; Lehn, Manfred (1997). The Geometry of Moduli Spaces of Sheaves (PDF)., Definition 1.2.4
  5. ^ Huybrechts, Daniel; Lehn, Manfred (1997). The Geometry of Moduli Spaces of Sheaves (PDF)., Definition 1.6.9

Read other articles:

Cool for the SummerSingel oleh Demi Lovatodari album ConfidentDirilis1 Juli 2015 (2015-07-01)Studio MXM Studios (Los Angeles) Wolf Cousins Studios (Stockholm) Genre Pop pop rock Durasi3:34Label Hollywood Island Safehouse Republic Pencipta Demi Lovato Savan Kotecha Max Martin Alexander Erik Kronlund Ali Payami Produser Max Martin Ali Payami[1] Kronologi singel Demi Lovato Up (2014) Cool for the Summer (2015) Confident (2015) Video musikCool for the Summer di YouTube Cool for the S...

 

 

فرانسيسكو فلاتشي   معلومات شخصية الميلاد 8 أبريل 1975 (العمر 49 سنة)فلورنسا  الطول 1.72 م (5 قدم 7 1⁄2 بوصة) مركز اللعب مهاجم الجنسية إيطاليا  معلومات النادي النادي الحالي Signa مسيرة الشباب سنوات فريق Isolotto فيورنتينا المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1993–1999 في...

 

 

Commune and town in Tlemcen Province, AlgeriaAïn YoucefCommune and townAïn YoucefCoordinates: 35°03′N 1°22′W / 35.050°N 1.367°W / 35.050; -1.367Country AlgeriaProvinceTlemcen ProvincePopulation (2008[1]) • Total13,234Time zoneUTC+1 (CET)Postal Code13510 Aïn Youcef is a town and commune in Tlemcen Province in northwestern Algeria.[2] References Algeria portal ^ Recensement 2008 de la population algérienne, wilaya de Tlem...

Chronologie de la France ◄◄ 1574 1575 1576 1577 1578 1579 1580 1581 1582 ►► Chronologies Henri III présidant la première cérémonie de l’ordre du Saint Esprit le 31 décembre 1578. Enluminure de Guillaume Richardière.Données clés 1575 1576 1577  1578  1579 1580 1581Décennies :1540 1550 1560  1570  1580 1590 1600Siècles :XIVe XVe  XVIe  XVIIe XVIIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architect...

 

 

Ne doit pas être confondu avec le Conseil européen ni avec le Conseil de l'Europe. Conseil des ministres de l'Union européenne Conseil de l'Union européenneHistoireFondation 1957Prédécesseur Conseil spécial de ministresFusion de Conseil de la Communauté économique européenne, du Conseil spécial de ministres de la CECA et du Conseil de l'EuratomCadreType Institution de l'Union européenne, pouvoir exécutif, pouvoir législatif (de facto), chambre hauteSiège Bâtiment Europa (Vill...

 

 

Jewish American author (1903–1991) For the American inventor, see Isaac Singer. Isaac Bashevis SingerPortrait c. 1980–1990BornIzaak Zynger(1903-11-11)November 11, 1903Leoncin, Congress Poland, Russian EmpireDiedJuly 24, 1991(1991-07-24) (aged 87)Surfside, Florida, United StatesPen nameBashevis, Warszawski (pron. Varshavsky),D. SegalOccupationNovelist, short story writerLanguageYiddishCitizenshipPoland, United StatesGenreFictional proseNotable worksThe Magician of LublinA Day of Pleas...

Town in Delaware, United StatesMagnolia, DelawareTownMagnolia Fire Company, with Town Hall and water tower in backgroundLocation of Magnolia in Kent County, Delaware.MagnoliaLocation within the state of DelawareShow map of DelawareMagnoliaMagnolia (the United States)Show map of the United StatesCoordinates: 39°04′16″N 75°28′34″W / 39.07111°N 75.47611°W / 39.07111; -75.47611Country United StatesState DelawareCounty KentArea[1] •...

 

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

 

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. (ديسمبر 2022) FHL5 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز م...

Artist This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this message) Ken FeingoldBorn1952Pittsburgh, PennsylvaniaNationalityAmericanEducationAntioch Co...

 

 

2024 Moldovan presidential election ← 2020 20 October 2024 2028 → Incumbent President Maia Sandu PAS Politics of Moldova Government of Moldova Constitution Human rights Neutrality Parliament President Igor Grosu Judiciary Constitutional Court Supreme Court Executive President Maia Sandu Prime Minister Dorin Recean Cabinet Recean Cabinet Administrative divisions Elections Presidential: 201620202024 Parliamentary:20192021Next Political parties Foreign relations Ministry o...

 

 

Alexander MatrosovLahir5 Februari 1924Yekaterinoslav (sekarang Dnipro), RSS Ukraina, Uni SovietMeninggal22 Februari 1943(1943-02-22) (umur 19)Chernushki, Distrik Loknyansky, Oblast Pskov, Uni SovietPengabdian Uni SovietDinas/cabang Tentara MerahLama dinas1942–1943Perang/pertempuranPerang Dunia II †PenghargaanPahlawan Uni Soviet Alexander Matveyevich Matrosov (bahasa Rusia: Алекса́ндр Матве́евич Матро́сов, bahasa Bashkir: Шәкир�...

German/Portuguese painter Grids and Grooves (2008) Pedro Boese (born 1972) is a German/Portuguese painter. Life and work Pedro Boese was born in Beira, Portuguese Mozambique. 1993–1997: graduation from the Academie Beeldende Kunsten Maastricht in painting and etching 1998–2001: postgraduate study at the Institut für Kunst im Kontext, Berlin University of the Arts 2000–2002: guest student at the class of Prof. Lothar Baumgarten, Berlin University of the Arts Lives and works in Berlin, G...

 

 

Vittorio Emanuele III di SavoiaVittorio Emanuele III di Savoia, Re d'Italia, fotografato da Mario Nunes Vais nel 1918Re d'ItaliaStemma In carica29 luglio 1900 –9 maggio 1946(45 anni e 284 giorni) PredecessoreUmberto I SuccessoreUmberto II Imperatore d'EtiopiaIn carica9 maggio 1936 –5 maggio 1941 PredecessoreHailé Selassié SuccessoreHailé Selassié Re d'AlbaniaIn carica9 aprile 1939 –27 novembre 1943 PredecessoreZog I SuccessoreZog I (de jure)titolo abolito(Oc...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Dalam artikel ini, nama keluarganya adalah Fujii. Fujii KazeLahir14 Juni 1997 (umur 27)[1]Satoshō, Okayama, Jepang[1]AsalJepangGenreJ-poprockR&BPekerjaan Pemusik Penyanyi-penulis lagu Instrumen Vokal piano electone saksofon T...

Karte des Landkreises Märkisch-Oderland Die Liste der Bau- und Bodendenkmale im Landkreis Märkisch-Oderland enthält die Kulturdenkmale (Bau- und Bodendenkmale) im Landkreis Märkisch-Oderland. Grundlage der Einzellisten sind die in den jeweiligen Listen angegebenen Quellen. Die Angaben in den einzelnen Listen ersetzen nicht die rechtsverbindliche Auskunft der zuständigen Denkmalschutzbehörde.[Anm. 1] Aufteilung Wegen der großen Anzahl von Kulturdenkmalen im Landkreis Märkisch-O...

 

 

1985 song For the album, see Caravan of Love (album). For the film, see Karavan Lyubvi. Caravan of LoveSingle by Isley-Jasper-Isleyfrom the album Caravan of Love B-sideI Can't Get over Losin' YouReleased1985 (1985)RecordedEast Orange, New Jersey, 1985 (1985)GenreR&B, soulLength5:42LabelEpicSongwriter(s)Ernie Isley, Chris Jasper and Marvin IsleyProducer(s)Ernie Isley, Chris Jasper and Marvin Isley Caravan of Love is a 1985 R&B hit originally recorded by Isley-Jasper-Isley, th...

 

 

Jacques Lacan Información personalNombre completo Jacques Marie Émile LacanNacimiento 13 de abril de 1901 III Distrito de París (Francia) Fallecimiento 9 de septiembre de 1981 (80 años)VI Distrito de París (Francia) Causa de muerte Cáncer colorrectal Sepultura Guitrancourt Nacionalidad FrancesaReligión Católico FamiliaCónyuge Marie-Louise Blondin (1934-1941)Sylvia Bataille (1953-1981) Hijos Judith Miller EducaciónEducación Doctor en Medicina Educado en Collège Stanislas ...

Basic emotion induced by a perceived threat Scared, Scares, and Feared redirect here. For the group of islets, see The Scares. For the Swedish band formerly known as Feared, see Ola Englund. For other uses, see Fear (disambiguation) and Scared (disambiguation). The Man Made Mad with Fear, a painting by Gustave Courbet Part of a series onEmotions Affect Classification In animals Emotional intelligence Mood Self-regulation Interpersonal Dysregulation Valence Emotions Acceptance Admiration Affec...

 

 

Ancient Egyptian funerary text For other uses, see Book of the Dead (disambiguation). This detailed scene, from the Papyrus of Hunefer (c. 1275 BC), shows the scribe Hunefer's heart being weighed on the scale of Maat against the feather of truth, by the jackal-headed Anubis. The ibis-headed Thoth, scribe of the gods, records the result. If his heart equals exactly the weight of the feather, Hunefer is allowed to pass into the afterlife. If not, he is eaten by the waiting chimeric devour...