Weierstrass point

In mathematics, a Weierstrass point on a nonsingular algebraic curve defined over the complex numbers is a point such that there are more functions on , with their poles restricted to only, than would be predicted by the Riemann–Roch theorem.

The concept is named after Karl Weierstrass.

Consider the vector spaces

where is the space of meromorphic functions on whose order at is at least and with no other poles. We know three things: the dimension is at least 1, because of the constant functions on ; it is non-decreasing; and from the Riemann–Roch theorem the dimension eventually increments by exactly 1 as we move to the right. In fact if is the genus of , the dimension from the -th term is known to be

for

Our knowledge of the sequence is therefore

What we know about the ? entries is that they can increment by at most 1 each time (this is a simple argument: has dimension as most 1 because if and have the same order of pole at , then will have a pole of lower order if the constant is chosen to cancel the leading term). There are question marks here, so the cases or need no further discussion and do not give rise to Weierstrass points.

Assume therefore . There will be steps up, and steps where there is no increment. A non-Weierstrass point of occurs whenever the increments are all as far to the right as possible: i.e. the sequence looks like

Any other case is a Weierstrass point. A Weierstrass gap for is a value of such that no function on has exactly a -fold pole at only. The gap sequence is

for a non-Weierstrass point. For a Weierstrass point it contains at least one higher number. (The Weierstrass gap theorem or Lückensatz is the statement that there must be gaps.)

For hyperelliptic curves, for example, we may have a function with a double pole at only. Its powers have poles of order and so on. Therefore, such a has the gap sequence

In general if the gap sequence is

the weight of the Weierstrass point is

This is introduced because of a counting theorem: on a Riemann surface the sum of the weights of the Weierstrass points is

For example, a hyperelliptic Weierstrass point, as above, has weight Therefore, there are (at most) of them. The ramification points of the ramified covering of degree two from a hyperelliptic curve to the projective line are all hyperelliptic Weierstrass points and these exhausts all the Weierstrass points on a hyperelliptic curve of genus .

Further information on the gaps comes from applying Clifford's theorem. Multiplication of functions gives the non-gaps a numerical semigroup structure, and an old question of Adolf Hurwitz asked for a characterization of the semigroups occurring. A new necessary condition was found by R.-O. Buchweitz in 1980 and he gave an example of a subsemigroup of the nonnegative integers with 16 gaps that does not occur as the semigroup of non-gaps at a point on a curve of genus 16 (see [1]). A definition of Weierstrass point for a nonsingular curve over a field of positive characteristic was given by F. K. Schmidt in 1939.

Positive characteristic

More generally, for a nonsingular algebraic curve defined over an algebraically closed field of characteristic , the gap numbers for all but finitely many points is a fixed sequence These points are called non-Weierstrass points. All points of whose gap sequence is different are called Weierstrass points.

If then the curve is called a classical curve. Otherwise, it is called non-classical. In characteristic zero, all curves are classical.

Hermitian curves are an example of non-classical curves. These are projective curves defined over finite field by equation , where is a prime power.

Notes

References

  • P. Griffiths; J. Harris (1994). Principles of Algebraic Geometry. Wiley Classics Library. Wiley Interscience. pp. 273–277. ISBN 0-471-05059-8.
  • Farkas; Kra (1980). Riemann Surfaces. Graduate Texts in Mathematics. Springer-Verlag. pp. 76–86. ISBN 0-387-90465-4.
  • Eisenbud, David; Harris, Joe (1987). "Existence, decomposition, and limits of certain Weierstrass points". Invent. Math. 87 (3): 495–515. doi:10.1007/bf01389240. S2CID 122385166.
  • Garcia, Arnaldo; Viana, Paulo (1986). "Weierstrass points on certain non-classical curves". Archiv der Mathematik. 46 (4): 315–322. doi:10.1007/BF01200462. S2CID 120983683.
  • Voskresenskii, V.E. (2001) [1994], "Weierstrass point", Encyclopedia of Mathematics, EMS Press

Read other articles:

Labor unions in the United StatesHotel union workers strike with the slogan One job should be enoughNational organization(s)AFL–CIO, SOC, IWWRegulatory authorityUnited States Department of Labor National Labor Relations BoardPrimary legislationNational Labor Relations Act Fair Labor Standards Act of 1938 Taft–Hartley ActTotal union membership14.3 million (2022)[1]Percentage of workforce unionized10.1% (2022) Public: 33.1% Private: 6.0% International Labour OrganizationUnited Stat...

 

 

Gerbang Selatan Angkor Thom Angkor Thom (bahasa Khmer: អង្គរធំ; secara harfiah: Kota Besar), adalah reruntuhan kompleks ibu kota kerajaan Khmer kuno di Kamboja. Angkor Thom melingkupi bagian tengah kompleks kota kuno Angkor. Ibu kota ini didirikan oleh raja Jayawarman VII dan mencakup kawasan seluas 9 km². Di kawasan ini terdapat beberapa monumen dari masa sebelumnya. Reruntuhan di dalam kompleks kota ini antara lain berbagai candi-candi dan istana-istana, serta terdap...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Haviva Rifda – berita · surat kabar · buku · cendekiawan · JSTOR Haviva RifdaLahirHaviva Rifda15 Juni 1999 (umur 24) Karawang, IndonesiaPekerjaanPemeranmodelTahun aktif2012—sekarang Haviva Ri...

Halaman ini berisi artikel tentang wilayah persatuan sejak 2019. Untuk bekas negara bagian sebelumnya, lihat Jammu dan Kashmir (negara bagian). Untuk kegunaan lain, lihat Jammu dan Kashmir dan Kasmir. Jammu dan KashmirWilayah persatuan[1][2] Dari atas ke bawah: Lembah Lidder, Benteng AkhnoorPeta wilayah Kashmir yang disengketakan dengan dua wilayah yang dikelola India ditampilkan berwarna putih kuam[3][1][2]Koordinat: 33°30′N 75°00′E / &#x...

 

 

Magnetometer atau pengukur semberani adalah sebuah alat pengukuran yang digunakan untuk dua tujuan umum, yaitu untuk mengukur magnetisasi bahan magnetik seperti feromagnet, atau untuk mengukur kekuatan; dan dalam beberapa kasus, arah medan magnet pada suatu titik dalam ruang angkasa (juga dikenal sebagai Gaussmeter atau magnetometer survey). Magnetometer pertama kali ditemukan oleh Carl Friedrich Gauss pada tahun 1833 dan perkembangan penting dalam abad ke-19 termasuk Hall Effect yang masih ...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: History of operating systems – news · newspapers · books · scholar · JSTOR (January 2013) (Learn how and wh...

Aldo Serena Informasi pribadiTanggal lahir 25 Juni 1960 (umur 63)Tempat lahir Montebelluna, ItaliaTinggi 183 m (600 ft 5 in)Posisi bermain StrikerInformasi klubKlub saat ini RetiredKarier senior*Tahun Tim Tampil (Gol)1977–1978 Montebelluna 29 (9)1978–1981 Internazionale 2 (1)1979–1980 → Como (loan) 18 (2)1980–1981 → Bari (loan) 35 (10)1981–1983 Internazionale 21 (2)1982–1983 → A.C. Milan (loan) 20 (8)1983–1985 Internazionale 28 (8)1984–1985 → Torin...

 

 

Dewan Perwakilan Rakyat DaerahKabupaten BimaDewan Perwakilan RakyatKabupaten Bima2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai25 September 2019PimpinanKetuaMuhammad Putera Feryandi (Golkar) sejak 18 Oktober 2019[1] Wakil Ketua IMuhammad Aminurlah (PAN) sejak 18 Oktober 2019[1] Wakil Ketua IIYasin (Gerindra) sejak 18 Oktober 2019[1] Wakil Ketua IIIHj. Nurhayati (PPP) sejak 18 Oktober 2019[1] KomposisiAnggota45Partai &a...

 

 

Questa voce sull'argomento calciatori camerunesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Souleymanou Hamidou Nazionalità  Camerun Altezza 182 cm Peso 77 kg Calcio Ruolo Portiere Termine carriera 2011 Carriera Giovanili 1999 Cotonsport Garoua Squadre di club1 1999-2000 Cotonsport Garoua30 (-?)2000-2003 Çaykur Rizespor60 (-?)2003-2008 Denizlispor128 (-156)2008-2011 ...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

 

Norvègeau Concours Eurovision 1966 Données clés Pays  Norvège Chanson Intet er nytt under solen Interprète Åse Kleveland Langue Norvégien Sélection nationale Radiodiffuseur Norsk rikskringkasting (NRK) Type de sélection Finale nationale, émission télévisée : Melodi Grand Prix 1966 Date 5 février 1966 Lieu Oslo Concours Eurovision de la chanson 1966 Position en finale 3e (15 point) 1965 1967 modifier La Norvège a participé au Concours Eurovision de la chanson 1966 le...

 

 

Paternalistic conservatives in Canada and the United Kingdom This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Red Tory – news · newspapers · books · scholar · JSTOR (November 2022) (Learn how and when to remove this message) Part of the Politics series onToryism Characteristics Agrarianism Classicism Counterr...

Immagine illustrativa sul regime internazionale del mare Col termine acque territoriali o mare territoriale si considera in diritto internazionale quella porzione di mare adiacente alla costa degli Stati; su questa parte di mare lo Stato esercita la propria sovranità territoriale in modo del tutto analogo al territorio corrispondente alla terraferma, con alcuni limiti. Il principio del mare territoriale si contrappone al generico principio consolidato in secoli di storia del mare libero, aff...

 

 

Taiwan Artikel ini adalah bagian dari seri Politik dan KetatanegaraanTaiwan Pemerintahan Konstitusi (Pasal Tambahan) Kebebasan beragama (Pasal 13) Hukum Perpajakan Kepresidenan Presiden Republik Tiongkok Tsai Ing-wen (PPD) Wakil Presiden Republik Tiongkok Lai Ching-te (PPD) Kantor Kepresidenan Dewan Keamanan Nasional Eksekutif Perdana Menteri Republik Tiongkok Su Tseng-chang (PPD) Wakil Perdana Menteri Republik Tiongkok Shen Jong-chin (PPD) Yuan Eksekutif Kabinet Legislatif Yuan Legislatif Ke...

 

 

Composition by Modest Mussorgsky This article is about the Mussorgsky compositions. For the 1964 Patrick White play, see Night on Bald Mountain (play). Modest Mussorgsky, 1865 Night on Bald Mountain (Russian: Ночь на лысой горе, romanized: Noch′ na lysoy gore), also known as Night on the Bare Mountain, is a series of compositions by Modest Mussorgsky (1839–1881). Inspired by Russian literary works and legend, Mussorgsky composed a musical picture, St. John's Eve on Bal...

1948 Italian general election ← 1946 18 April 1948 1953 → outgoing memberselected membersChamber of DeputiesAll 574 seats in the Chamber of Deputies288 seats needed for a majorityTurnout92.23% Party Leader % Seats +/– DC Alcide De Gasperi 48.51 305 +98 FDP Palmiro Togliatti & Pietro Nenni 30.98 183 −36 US Giuseppe Saragat 7.07 33 New BN Roberto Lucifero d'Aprigliano 3.82 19 −52 PNM Alfredo Covelli 2.78 14 −2 PRI Randolfo Pacciardi 2.48 9 −14 MSI Giorgio Al...

 

 

Village in FloridaRoyal Palm Beach, FloridaVillageVillage of Royal Palm BeachLocation of Royal Palm Beach in Palm Beach County, FloridaCoordinates: 26°42′21″N 80°13′36″W / 26.70583°N 80.22667°W / 26.70583; -80.22667Country United States of AmericaState FloridaCounty Palm BeachIncorporatedJune 18, 1959Government • TypeMayor-Council • MayorFred Pinto (D)[1][2] • Vice MayorJeff Hmara • ...

 

 

Manufacturer of equipment for climbing, skiing, and mountain sports This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Black Diamond Equipment – news · newspapers · books · scholar · JSTOR (March 2016) (Learn how and when to remove this message) Black Diamond EquipmentCompany typePublicTraded asNasdaq: CLA...

South African rugby union footballer, coach and administrator Rugby playerDanie CravenCraven in New Zealand in 1956Birth nameDaniël Hartman CravenDate of birth(1910-10-11)11 October 1910Place of birthLindley, Free State, South AfricaDate of death4 January 1993(1993-01-04) (aged 82)Place of deathStellenbosch, South AfricaHeight1.78 m (5 ft 10 in)Weight80 kg (176 lb)SchoolLindley High SchoolUniversityStellenbosch UniversityOccupation(s)President of South African R...

 

 

Kaos kaki longgar di Jepang Kaos kaki longgar (ルーズソックスcode: ja is deprecated , rūzu sokkusu) adalah sebuah gaya kaos kaki yang dipakai oleh para gadis SMA asal Jepang, sebagai bagian dari budaya kogal.[1] Gaya kaos kaki tersebut juga populer di kalangan remaja dan mahasiswa Amerika yang menjadi penggemar anime dan manga Jepang. Lihat pula Zettai ryōiki Referensi ^ Wallace, Sam (24 October 1998). Filling the gap. The Daily Telegraph. London. Diarsipkan dari versi asli t...