Clifford's theorem on special divisors

In mathematics, Clifford's theorem on special divisors is a result of William K. Clifford (1878) on algebraic curves, showing the constraints on special linear systems on a curve C.

Statement

A divisor on a Riemann surface C is a formal sum of points P on C with integer coefficients. One considers a divisor as a set of constraints on meromorphic functions in the function field of C, defining as the vector space of functions having poles only at points of D with positive coefficient, at most as bad as the coefficient indicates, and having zeros at points of D with negative coefficient, with at least that multiplicity. The dimension of is finite, and denoted . The linear system of divisors attached to D is the corresponding projective space of dimension .

The other significant invariant of D is its degree d, which is the sum of all its coefficients.

A divisor is called special if (K − D) > 0, where K is the canonical divisor.[1]

Clifford's theorem states that for an effective special divisor D, one has:

,

and that equality holds only if D is zero or a canonical divisor, or if C is a hyperelliptic curve and D linearly equivalent to an integral multiple of a hyperelliptic divisor.

The Clifford index of C is then defined as the minimum of taken over all special divisors (except canonical and trivial), and Clifford's theorem states this is non-negative. It can be shown that the Clifford index for a generic curve of genus g is equal to the floor function

The Clifford index measures how far the curve is from being hyperelliptic. It may be thought of as a refinement of the gonality: in many cases the Clifford index is equal to the gonality minus 2.[2]

Green's conjecture

A conjecture of Mark Green states that the Clifford index for a curve over the complex numbers that is not hyperelliptic should be determined by the extent to which C as canonical curve has linear syzygies. In detail, one defines the invariant a(C) in terms of the minimal free resolution of the homogeneous coordinate ring of C in its canonical embedding, as the largest index i for which the graded Betti number βi, i + 2 is zero. Green and Robert Lazarsfeld showed that a(C) + 1 is a lower bound for the Clifford index, and Green's conjecture states that equality always holds. There are numerous partial results.[3]

Claire Voisin was awarded the Ruth Lyttle Satter Prize in Mathematics for her solution of the generic case of Green's conjecture in two papers.[4][5] The case of Green's conjecture for generic curves had attracted a huge amount of effort by algebraic geometers over twenty years before finally being laid to rest by Voisin.[6] The conjecture for arbitrary curves remains open.

Notes

References

  • Arbarello, Enrico; Cornalba, Maurizio; Griffiths, Phillip A.; Harris, Joe (1985). Geometry of Algebraic Curves Volume I. Grundlehren de mathematischen Wisenschaften 267. ISBN 0-387-90997-4.
  • Clifford, William K. (1878), "On the Classification of Loci", Philosophical Transactions of the Royal Society of London, 169, The Royal Society: 663–681, doi:10.1098/rstl.1878.0020, ISSN 0080-4614, JSTOR 109316
  • Eisenbud, David (2005). The Geometry of Syzygies. A second course in commutative algebra and algebraic geometry. Graduate Texts in Mathematics. Vol. 229. New York, NY: Springer-Verlag. ISBN 0-387-22215-4. Zbl 1066.14001.
  • Fulton, William (1974). Algebraic Curves. Mathematics Lecture Note Series. W.A. Benjamin. p. 212. ISBN 0-8053-3080-1.
  • Griffiths, Phillip A.; Harris, Joe (1994). Principles of Algebraic Geometry. Wiley Classics Library. Wiley Interscience. p. 251. ISBN 0-471-05059-8.
  • Hartshorne, Robin (1977). Algebraic Geometry. Graduate Texts in Mathematics. Vol. 52. ISBN 0-387-90244-9.

Read other articles:

English rock band This article is about the music group. For other uses, see Kasabian (disambiguation). KasabianKasabian performing at iTunes Festival, Roundhouse London In 2014Background informationAlso known asSaracuseOriginLeicester, EnglandGenres Indie rock[1] alternative rock[2] electronica[3] electronic rock[4][5] space rock[6] Years active1997–presentLabels Columbia Sony RCA Members Sergio Pizzorno Chris Edwards Ian Matthews Tim Carter ...

 

Rodolfo I d'AsburgoSigillo di Rodolfo I, 1275Re dei RomaniStemma In carica1º ottobre 1273 –15 luglio 1291 Incoronazione24 ottobre 1273 PredecessoreAlfonso X di Castiglia (re eletto nel periodo del Grande Interregno) SuccessoreAdolfo di Nassau Duca d'Austria e di StiriaIn carica1278 –dicembre 1282 PredecessoreOttocaro II di Boemia SuccessoreAlberto I e Rodolfo II Duca di CarinziaMargravio di CarniolaIn carica1276 –1286 PredecessoreOttocaro II di Boemia SuccessoreMainardo ...

 

Former municipality in Jura, SwitzerlandFregiécourtFormer municipalityLocation of Fregiécourt FregiécourtShow map of SwitzerlandFregiécourtShow map of Canton of JuraCoordinates: 47°25′N 07°12′E / 47.417°N 7.200°E / 47.417; 7.200CountrySwitzerlandCantonJuraDistrictPorrentruyArea • Total348 km2 (134 sq mi)Elevation526 m (1,726 ft)Population (2003) • Total133 • Density0.38/km2 (0.99/sq mi)T...

Universitas LampungJenisPerguruan Tinggi NegeriDidirikan23 September 1965Lembaga indukKementerian Pendidikan, Kebudayaan, Riset, dan TeknologiRektorProf. Dr. Ir. Lusmeilia Afriyani, DEA., IPM.[1]Staf akademikPengajar:1.164 orang [2] (2012)Tenaga Administrasi: 673 orang [3] (2012)Jumlah mahasiswa36.903 orang [4] (2014)AlamatJl. Prof. Dr. Sumantri Brojonegoro No.1, Kota Bandar Lampung, Lampung, IndonesiaKampusSuburbanWarnaHijauNama julukanUnilaAfiliasiASAIHL (Ass...

 

Le storie di FarlandPaeseItalia Anno1993-1994 Formatoserie TV Generefantasy Stagioni1 Episodi40 Durata6 min circa Lingua originaleitaliano CreditiIdeatoreRiccardo Colasanti RegiaGiuliana Gamba SceneggiaturaRiccardo Colasanti, Leopoldo Siano, Maria Teresa Laudando Interpreti e personaggi Rodolfo Baldini: Formigola Ramona Badescu: Vedonia Voci e personaggi Leslie La Penna: Coboldo/Lord dei Paladini/Alchimista/Uomo Lupo/Capo dei Troll/Shalott/Drago Custode/Unicorno/Drago Sputafuoco/Urca l'Orco E...

 

ماكسيمليان الثاني ملك بافاريا (بالألمانية: Maximilian II. Joseph)‏  معلومات شخصية الميلاد 28 نوفمبر 1811(1811-11-28)[1]ميونخ  الوفاة 10 مارس 1864 (52 سنة) [1]ميونخ  الجنسية ألمانيا عضو في الأكاديمية البافارية للعلوم والإنسانيات  الأولاد لودفيغ الثاني ملك بافارياأوتو الأول ملك �...

2012 single by The Smashing PumpkinsThe CelestialsSingle by The Smashing Pumpkinsfrom the album Oceania ReleasedJune 19, 2012Recorded2011GenreAlternative rockLength3:58LabelEMI/CarolineSongwriter(s)Billy CorganProducer(s)Billy CorganBjorn ThorsrudThe Smashing Pumpkins singles chronology Owata (2011) The Celestials (2012) Panopticon (2012) The Celestials is the first single from The Smashing Pumpkins' ninth album Oceania. It was originally sent to radio airplay as a promotional single on June...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

Harry Triono [[Komandan Korps Marinir]] 13Masa jabatan1999 – 2002PendahuluMayjen TNI (Mar) SuhartoPenggantiMayjen TNI (Mar) Achmad Rifai Informasi pribadiLahirBondowoso, Jawa TimurAlma materAkademi Angkatan Laut (1971)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan LautMasa dinas1971-2003Pangkat Mayor Jenderal TNI (Mar)NRP6976/PSatuanKorps MarinirSunting kotak info • L • B Mayor Jenderal TNI Mar (Purn.) Harry Triono, S.Ip, M.M., (lahir di Bondowos...

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut pandang netral dan sesuai dengan kebijakan ...

 

Penerbit ErlanggaJenisPublikIndustriPenerbitanDidirikan30 April 1952; 72 tahun lalu (1952-04-30)KantorpusatJl. H. Baping No. 100, Ciracas, Jakarta Timur, IndonesiaTokohkunciGunawan HutaurukProdukPenerbitanIndukErlangga GroupSitus webwww.erlangga.co.id Penerbit Erlangga adalah perusahaan yang bergerak di bidang percetakan dan penerbitan di Jakarta, Indonesia yang didirikan pada 30 April 1952.[1] Saat ini penerbit Erlangga dipimpin oleh Gunawan Hutauruk, generasi ketiga dari pendir...

 

Fun in AcapulcoTheatrical release posterSutradaraRichard ThorpeProduserHal B. WallisDitulis olehAllan WeissPemeran Elvis Presley Ursula Andress Paul Lukas Elsa Cárdenas Penata musikJoseph J. LilleySinematograferDaniel L. FappPenyuntingStanley E. JohnsonPerusahaanproduksiHal Wallis ProductionsDistributorParamount PicturesTanggal rilis 27 November 1963 (1963-11-27) (AS) Durasi97 menitNegaraAmerika SerikatBahasaInggrisPendapatankotor$3,100,000 (AS / Kanada)[1] Fun in Acap...

2021 tornado outbreak and blizzard in the United States Tornado outbreak of March 16–18, 2021Map of confirmed tornadoes and tornado warnings received by the Storm Prediction Center TypeExtratropical cycloneTornado outbreakBlizzardDurationMarch 16–18, 2021 Highest windsTornadic – 135 mph (217 km/h) in Wayne County, Mississippi on March 17Non-tornadic – 85 mph (137 km/h) near Garysburg, North Carolina on March 18 Tornadoesconfirmed51Max. rating1EF2 tornadoD...

 

Village in Southern Transdanubia, HungaryFőnyedVillage Coat of armsFőnyedLocation of FőnyedCoordinates: 46°37′45″N 17°15′23″E / 46.6293°N 17.2565°E / 46.6293; 17.2565Country HungaryRegionSouthern TransdanubiaCountySomogyDistrictMarcaliRC DioceseKaposvárArea • Total5.73 km2 (2.21 sq mi)Population (2017) • Total72[1]DemonymfőnyediTime zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST)Postal cod...

 

نخت انبو الثانيNectanebo IIرأس نخت‌ انبو من الكرانوديوريت، متحف الفنون الجميلة، بوسطن.فرعون مصرالحقبة360-343 قبل الميلاد, الأسرة المصرية الثلاثونسبقهتيوستبعهأردشير الثالث الأخميني الألقاب الملكية اسم التتويج: Nekhtnebef القوة في ربهالاسم الشخصي: نخت ‌حورب اسم حورس الذهبي:  ...

Mammalian protein found in Homo Sapiens Crystallographic structure of phospholipase A1. Red region denotes α helices, Green region denotes loops, and yellow region denotes β sheets.IdentifiersEC no.3.1.1.32CAS no.9043-29-2 DatabasesIntEnzIntEnz viewBRENDABRENDA entryExPASyNiceZyme viewKEGGKEGG entryMetaCycmetabolic pathwayPRIAMprofilePDB structuresRCSB PDB PDBe PDBsumGene OntologyAmiGO / QuickGOSearchPMCarticlesPubMedarticlesNCBIproteins phospholipase A1 member AIdentifiersSymbolPLA1ANCBI g...

 

Science of growing plants in urban environments Urban horticulture is the science and study of the growing plants in an urban environment. It focuses on the functional use of horticulture so as to maintain and improve the surrounding urban area.[1][2] Urban horticulture has seen an increase in attention with the global trend of urbanization and works to study the harvest, aesthetic, architectural, recreational and psychological purposes and effects of plants in urban environme...

 

2012 National Football League championship game 2012 Super Bowl redirects here. For the Super Bowl that was played at the completion of the 2012 season, see Super Bowl XLVII. Super Bowl XLVI New York Giants (4)(NFC)(9–7) New England Patriots (1)(AFC)(13–3) 21 17 Head coach:Tom Coughlin Head coach:Bill Belichick 1234 Total NYG 9066 21 NE 01070 17 DateFebruary 5, 2012 (2012-02-05)Kickoff time6:30 p.m. EST (UTC-5)StadiumLucas Oil Stadium, Indianapolis, IndianaMVPEli Manning, q...

Part of a series onForced labour and slavery Contemporary Child Labour Child soldiers Conscription Debt Forced marriage Bride buying Child marriage Wife selling Forced prostitution Human trafficking Peonage Penal labour Contemporary Africa 21st-century jihadism Sexual slavery Wage slavery Historical Antiquity Egypt Babylonia Greece Rome Medieval Europe Ancillae Black Sea slave trade Byzantine Empire Kholop Prague slave trade Serfs History In Russia Emancipation Thrall Genoese slave trade Ven...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (February 2015) (Learn how and when to remove this message) This article needs additional citations for verification. Please help improve this article...