Modular elliptic curve

Graphs of elliptic curves y2 = x3x and y2 = x3x + 1. If we consider these as curves over the rationals, then the modularity theorem asserts that they can be parametrized by a modular curve.

A modular elliptic curve is an elliptic curve E that admits a parametrization X0(N) → E by a modular curve. This is not the same as a modular curve that happens to be an elliptic curve, something that could be called an elliptic modular curve. The modularity theorem, also known as the Taniyama–Shimura conjecture, asserts that every elliptic curve defined over the rational numbers is modular.

History and significance

In the 1950s and 1960s a connection between elliptic curves and modular forms was conjectured by the Japanese mathematician Goro Shimura based on ideas posed by Yutaka Taniyama. In the West it became well known through a 1967 paper by André Weil. With Weil giving conceptual evidence for it, it is sometimes called the Taniyama–Shimura–Weil conjecture. It states that every rational elliptic curve is modular.

On a separate branch of development, in the late 1960s, Yves Hellegouarch came up with the idea of associating solutions (a,b,c) of Fermat's equation with a completely different mathematical object: an elliptic curve.[1] The curve consists of all points in the plane whose coordinates (xy) satisfy the relation

Such an elliptic curve would enjoy very special properties, which are due to the appearance of high powers of integers in its equation and the fact that an + bn = cn is an nth power as well.

In the summer of 1986, Ken Ribet demonstrated that, just as Gerhard Frey had anticipated, a special case of the Taniyama–Shimura conjecture (still not proved at the time), together with the now proved epsilon conjecture (now called Ribet's theorem), implies Fermat's Last Theorem. Thus, if the Taniyama–Shimura conjecture is true for semistable elliptic curves, then Fermat's Last Theorem would be true. However this theoretical approach was widely considered unattainable, since the Taniyama–Shimura conjecture was itself widely seen as completely inaccessible to proof with current knowledge.[2] For example, Wiles' ex-supervisor John Coates states that it seemed "impossible to actually prove",[3] and Ken Ribet considered himself "one of the vast majority of people who believed [it] was completely inaccessible".[4]

Hearing of the 1986 proof of the epsilon conjecture, Wiles decided to begin researching exclusively towards a proof of the Taniyama–Shimura conjecture. Ribet later commented that "Andrew Wiles was probably one of the few people on earth who had the audacity to dream that you can actually go and prove [it]." [4]

Wiles first announced his proof on Wednesday June 23, 1993, at a lecture in Cambridge entitled "Elliptic Curves and Galois Representations."[5] However, the proof was found to contain an error in September 1993. One year later, on Monday September 19, 1994, in what he would call "the most important moment of [his] working life," Wiles stumbled upon a revelation, "so indescribably beautiful... so simple and so elegant," that allowed him to correct the proof to the satisfaction of the mathematical community. The correct proof was published in May 1995. The proof uses many techniques from algebraic geometry and number theory, and has many ramifications in these branches of mathematics. It also uses standard constructions of modern algebraic geometry, such as the category of schemes and Iwasawa theory, and other 20th-century techniques not available to Fermat.

Modularity theorem

The theorem states that any elliptic curve over Q can be obtained via a rational map with integer coefficients from the classical modular curve

for some integer N; this is a curve with integer coefficients with an explicit definition. This mapping is called a modular parametrization of level N. If N is the smallest integer for which such a parametrization can be found (which by the modularity theorem itself is now known to be a number called the conductor), then the parametrization may be defined in terms of a mapping generated by a particular kind of modular form of weight two and level N, a normalized newform with integer q-expansion, followed if need be by an isogeny.

The modularity theorem implies a closely related analytic statement: to an elliptic curve E over Q we may attach a corresponding L-series. The L-series is a Dirichlet series, commonly written

where the product and the coefficients are defined in Hasse–Weil zeta function. The generating function of the coefficients is then

If we make the substitution

we see that we have written the Fourier expansion of a function of the complex variable τ, so the coefficients of the q-series are also thought of as the Fourier coefficients of . The function obtained in this way is, remarkably, a cusp form of weight two and level N and is also an eigenform (an eigenvector of all Hecke operators); this is the Hasse–Weil conjecture, which follows from the modularity theorem.

Some modular forms of weight two, in turn, correspond to holomorphic differentials for an elliptic curve. The Jacobian of the modular curve can (up to isogeny) be written as a product of irreducible Abelian varieties, corresponding to Hecke eigenforms of weight 2. The 1-dimensional factors are elliptic curves (there can also be higher-dimensional factors, so not all Hecke eigenforms correspond to rational elliptic curves). The curve obtained by finding the corresponding cusp form, and then constructing a curve from it, is isogenous to the original curve (but not, in general, isomorphic to it).

References

  1. ^ Hellegouarch, Yves (2001). Invitation to the Mathematics of Fermat–Wiles. Academic Press. ISBN 978-0-12-339251-0.
  2. ^ Singh, Simon (October 1998). Fermat's Enigma. New York: Anchor Books. ISBN 978-0-385-49362-8. Zbl 0930.00002.: 203–205, 223, 226 
  3. ^ Singh, Simon (October 1998). Fermat's Enigma. New York: Anchor Books. ISBN 978-0-385-49362-8. Zbl 0930.00002.: 226 
  4. ^ a b Singh, Simon (October 1998). Fermat's Enigma. New York: Anchor Books. ISBN 978-0-385-49362-8. Zbl 0930.00002.: 223 
  5. ^ Kolata, Gina (24 June 1993). "At Last, Shout of 'Eureka!' In Age-Old Math Mystery". The New York Times. Retrieved 21 January 2013.

Further reading

Read other articles:

Cesare DanovaCesare Danova dalam trailer untuk Chamber of Horrors (1966)LahirCesare Deitinger(1926-03-01)1 Maret 1926Roma, ItaliaMeninggal19 Maret 1992(1992-03-19) (umur 66)Los Angeles, California, ASSebab meninggalSerangan jantungMakamValley Oaks Memorial Park CemeteryKebangsaanItaliaPekerjaanPemeranTahun aktif1947–1992Suami/istriPamela Matthews (1955–1963) (bercerai) 2 anakPatricia Chandler (1977–1992) (kematiannya) Cesare Danova (1 Maret 1926 – 19 Mare...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Juni 2020. Virus HIV yang merupakan salah satu penyebab keratoderma Keratoderma adalah penyakit kulit berupa penebalan lapisan keratin yang tidak normal.[1] Ada berbagai jenis dan variasi dari keratoderma.[1] Palmo-plantar Jenis keratoderma ini adala...

 

Untuk kegunaan lain, lihat Moroni. Moroni موروني MūrūnīNegara ComorosPulauGrande ComoreCapital city1962Populasi (2003) • Total60.200 (estimate)Zona waktuUTC+3 (Eastern Africa Time) Peta Komoro menunjukkan letak kota Moroni di Pulau Grande Comore Moroni (bahasa Arab: موروني) adalah kota terbesar di Komoro dan berstatus ibu kota negara sejak 1962. Penduduknya berjumlah 23.400 jiwa (1990). Moroni terletak di pesisir barat Pulau Komoro Besar pada koordinat 11...

English footballer (born 1975) Darren Eadie Eadie in 2021Personal informationFull name Darren Malcolm EadieDate of birth (1975-06-10) 10 June 1975 (age 48)Place of birth Chippenham, EnglandPosition(s) MidfielderTeam informationCurrent team Leiston (joint manager)Youth career Norwich CitySenior career*Years Team Apps (Gls)1993–1999 Norwich City 168 (35)1999–2003 Leicester City 40 (2)Total 208 (37)International career1994–1997 England U21 7 (2)Managerial career2020– Leiston *Club d...

 

Uruguayan footballer For other people named Juan Silva, see Juan Silva (disambiguation). Juan Silva Personal informationFull name Juan Ramón SilvaDate of birth (1948-08-30) August 30, 1948 (age 75)Place of birth UruguayInternational careerYears Team Apps (Gls) Uruguay Juan Ramón Silva (born 30 August 1948) was a professional footballer with Uruguayan club C.A. Peñarol and was part of the Uruguayan Squad at the World Cup in Germany in 1974.[1] He played as a forward.[2]...

 

Eurovision Song Contest's Greatest Hits Dates Finale 31 mars 2015 (enregistrement) Retransmission Lieu Eventim Apollo, Londres Royaume-Uni Présentateur(s) Graham NortonPetra Mede Superviseur exécutif Jon Ola Sand Télédiffuseur hôte UER, BBC Entracte Riverdance Participants Nombre de participants 16 chansons de 1973 à 2014 Pays diffuseurs Pays avec diffusion incertaine Pays ayant décliné la diffusion Résultat Congratulations : 50 ans du Concours Eurovision de la chanson Euro...

Hoyu Co., Ltd. (ホーユー株式会社) adalah produsen farmasi besar berkantor pusat di Higashi-ku, Kota Nagoya, Prefektur Aichi. Produk utama mereka adalah produk pewarna rambut yang tergolong obat bebas. Nama perusahaan diambil dari nama pendahulunya, Hoyu Shokai (朋友商会). Merek unggulan mereka antara lain Bigen, Cielo, Beauteen, dan Beautylabo. Selain produk komersial, perusahaan ini juga memproduksi dan menjual peralatan asli. tautan luar Situs web resmi

 

العلاقات الإندونيسية التنزانية إندونيسيا تنزانيا   إندونيسيا   تنزانيا تعديل مصدري - تعديل   العلاقات الإندونيسية التنزانية هي العلاقات الثنائية التي تجمع بين إندونيسيا وتنزانيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدو...

 

Artikel ini bukan mengenai Hiu gergaji.Ikan gergaji Periode Kapur Akhir - Masa kini[1] PreЄ Є O S D C P T J K Pg N Pristidae Hiu gergaji umum, Pristis pristis (atas), Ikan gergaji hijau, Pristis zijsron (bawah)TaksonomiKerajaanAnimaliaFilumChordataKelasChondrichthyesOrdoRhinopristiformesFamiliPristidae Bonaparte, 1838 Genus Anoxypristis White & Moy-Thomas, 1941 †Propristis Dames, 1883 Pristis Linck, 1790 lbs Ikan gergaji atau hiu tukang kayu (famili Pristidae) adalah sebuah fa...

Exology Chapter 1: The Lost PlanetAlbum panggung karya EXODirilis22 Desember 2014 (2014-12-22)Direkam2014GenreK-pop, dansa, baladaDurasi54:57BahasaKoreaLabelS.M. Entertainment, KT MusicProduserLee Soo-man (exec.)Kronologi EXO Overdose(2014)Overdose2014 Exology Chapter 1: The Lost Planet(2014) EXODUS(2015)EXODUS2015 Singel dalam album Exology Chapter 1: The Lost Planet December, 2014 (The Winter's Tale)Dirilis: 19 Desember 2014 Exology Chapter 1: The Lost Planet (ditulis sebagai EXOLO...

 

Wikipedia bahasa Sunda URLsu.wikipedia.orgTipeEnsiklopedia daringPerdagangan ?TidakRegistrationOpsionalLangueBahasa SundaLisensiCreative Commons Atribusi-BerbagiSerupa 3.0 Tanpa Adaptasi dan Lisensi Dokumentasi Bebas GNU PemilikYayasan WikimediaService entry15 Maret 2004 Wikipedia bahasa Sunda adalah ensiklopedia dari versi bahasa Sunda Wikipedia. Wikipedia bahasa Sunda umumnya mengikuti peraturan-peraturan dasar Wikipedia bahasa Indonesia. Pranala luar Wikipedia bahasa Sunda lbsDaftar ...

 

Species of eucalyptus Flat-topped yate Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Myrtales Family: Myrtaceae Genus: Eucalyptus Species: E. occidentalis Binomial name Eucalyptus occidentalisEndl. Synonyms Eucalyptus agnata Domin Eucalyptus occidentalis var. occidentalis Eucalyptus occidentalis, commonly known as the flat topped yate or the swamp yate, is a tree that is native to Western Australia.[1] The ...

A chain of convenience stores operating in the United Kingdom LondisLogo used since 2009A Londis store in Bulwark, ChepstowCompany typePrivateIndustryRetailFounded1959Area servedUnited KingdomProductsGroceriesParentTesco[1] (via Booker Group[2])Websitewww.londis.co.uk Londis is a symbol group in the United Kingdom with over 2,000 stores nationwide. Tesco owns the brand, following its 2018 purchase of Booker Group.[3][2][1] Although it was formerly a sub...

 

Battle during Hungarian Revolution of 1848 Battle of NagysallóPart of the Hungarian Revolution of 1848Battle of Nagysallo, unknown artistDate19 April 1849Locationaround and in Nagysalló and Nagymálas, Kingdom of Hungary(now Tekovské Lužany and Málaš, Slovakia)Result Hungarian victoryBelligerents  Hungarian Revolutionary Army Polish Legion  Austrian EmpireCommanders and leaders  János Damjanich György Klapka András Gáspár  Ludwig von WohlgemuthStrength...

 

Highway in Wisconsin State Trunk Highway 54Wisconsin Firefighters and Emergency Medical Technicians HighwayWIS-54 highlighted in redRoute informationMaintained by WisDOTLength243.12 mi[1][2] (391.26 km)Major junctionsWest end MN 43 west of MarshlandMajor intersections US 53 / WIS 93 in Galesville US 12 / WIS 27 in Black River Falls I-94 in Black River Falls I-39 / US 51 in Plover US 10 / WIS 22...

Japanese manga artist Taiyō Matsumoto松本 大洋Born (1967-10-25) October 25, 1967 (age 56)Area(s)Manga artistNotable worksTekkonkinkreetTakemitsuzamuraiPing PongSunnyAwardsJapan Cartoonists Association Award, 2001 for GoGo Monster[1]Japan Media Arts Festival, 2007 for Takemitsuzamurai[2]Eisner Awards, 2008 for Tekkonkinkreet[3]Tezuka Osamu Cultural Prize, 2011 for Takemitsuzamurai with Issei Eifuku[4]Cartoonist Studio Prize, 2014 for Sunny[5]Ja...

 

Cet article est une ébauche concernant le droit. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Les pays offrant la meilleure allocation de chômage : part du salaire versée après six mois de chômage dans quelques pays de l'OCDE. L'assurance chômage (ou au Canada l'assurance-emploi), est un régime d'assurance sociale qui vise à compenser la perte de salaire des assurés privés d'emploi, involontair...

 

Overview of major Austronesian languages This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of major and official Austronesian languages – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) Map showing the distribution of language families; the pink colo...

Chicago activist Lois L. BatesLois L. BatesBorn1970 (1970)Died2011(2011-00-00) (aged 40–41)OccupationActivist Lois L. Bates (1970-2011) was an activist in Chicago's transgender community. She was known specifically for her HIV prevention work and her advocacy for trans youth.[1] She was also involved with the Chicago Area Ryan White Services Planning Council, Chicago Windy City Black Pride, the Chicago Transgender Coalition, Lakeview Action, the Minority Outreach Intervent...

 

  لمعانٍ أخرى، طالع سبرينغ (توضيح). سبرينغ     الإحداثيات 30°03′15″N 95°23′13″W / 30.0542°N 95.3869°W / 30.0542; -95.3869   تقسيم إداري  البلد الولايات المتحدة[1][2]  التقسيم الأعلى مقاطعة هاريستكساس  خصائص جغرافية  المساحة 59.10056 كيلومتر مربع60.987795 كيلومتر...