Modular curve

In number theory and algebraic geometry, a modular curve Y(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curves X(Γ) which are compactifications obtained by adding finitely many points (called the cusps of Γ) to this quotient (via an action on the extended complex upper-half plane). The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field of rational numbers Q or a cyclotomic field Qn). The latter fact and its generalizations are of fundamental importance in number theory.

Analytic definition

The modular group SL(2, Z) acts on the upper half-plane by fractional linear transformations. The analytic definition of a modular curve involves a choice of a congruence subgroup Γ of SL(2, Z), i.e. a subgroup containing the principal congruence subgroup of level N for some positive integer N, which is defined to be

The minimal such N is called the level of Γ. A complex structure can be put on the quotient Γ\H to obtain a noncompact Riemann surface called a modular curve, and commonly denoted Y(Γ).

Compactified modular curves

A common compactification of Y(Γ) is obtained by adding finitely many points called the cusps of Γ. Specifically, this is done by considering the action of Γ on the extended complex upper-half plane H* = HQ ∪ {∞}. We introduce a topology on H* by taking as a basis:

  • any open subset of H,
  • for all r > 0, the set
  • for all coprime integers a, c and all r > 0, the image of under the action of
where m, n are integers such that an + cm = 1.

This turns H* into a topological space which is a subset of the Riemann sphere P1(C). The group Γ acts on the subset Q ∪ {∞}, breaking it up into finitely many orbits called the cusps of Γ. If Γ acts transitively on Q ∪ {∞}, the space Γ\H* becomes the Alexandroff compactification of Γ\H. Once again, a complex structure can be put on the quotient Γ\H* turning it into a Riemann surface denoted X(Γ) which is now compact. This space is a compactification of Y(Γ).[1]

Examples

The most common examples are the curves X(N), X0(N), and X1(N) associated with the subgroups Γ(N), Γ0(N), and Γ1(N).

The modular curve X(5) has genus 0: it is the Riemann sphere with 12 cusps located at the vertices of a regular icosahedron. The covering X(5) → X(1) is realized by the action of the icosahedral group on the Riemann sphere. This group is a simple group of order 60 isomorphic to A5 and PSL(2, 5).

The modular curve X(7) is the Klein quartic of genus 3 with 24 cusps. It can be interpreted as a surface with three handles tiled by 24 heptagons, with a cusp at the center of each face. These tilings can be understood via dessins d'enfants and Belyi functions – the cusps are the points lying over ∞ (red dots), while the vertices and centers of the edges (black and white dots) are the points lying over 0 and 1. The Galois group of the covering X(7) → X(1) is a simple group of order 168 isomorphic to PSL(2, 7).

There is an explicit classical model for X0(N), the classical modular curve; this is sometimes called the modular curve. The definition of Γ(N) can be restated as follows: it is the subgroup of the modular group which is the kernel of the reduction modulo N. Then Γ0(N) is the larger subgroup of matrices which are upper triangular modulo N:

and Γ1(N) is the intermediate group defined by:

These curves have a direct interpretation as moduli spaces for elliptic curves with level structure and for this reason they play an important role in arithmetic geometry. The level N modular curve X(N) is the moduli space for elliptic curves with a basis for the N-torsion. For X0(N) and X1(N), the level structure is, respectively, a cyclic subgroup of order N and a point of order N. These curves have been studied in great detail, and in particular, it is known that X0(N) can be defined over Q.

The equations defining modular curves are the best-known examples of modular equations. The "best models" can be very different from those taken directly from elliptic function theory. Hecke operators may be studied geometrically, as correspondences connecting pairs of modular curves.

Quotients of H that are compact do occur for Fuchsian groups Γ other than subgroups of the modular group; a class of them constructed from quaternion algebras is also of interest in number theory.

Genus

The covering X(N) → X(1) is Galois, with Galois group SL(2, N)/{1, −1}, which is equal to PSL(2, N) if N is prime. Applying the Riemann–Hurwitz formula and Gauss–Bonnet theorem, one can calculate the genus of X(N). For a prime level p ≥ 5,

where χ = 2 − 2g is the Euler characteristic, |G| = (p+1)p(p−1)/2 is the order of the group PSL(2, p), and D = π − π/2 − π/3 − π/p is the angular defect of the spherical (2,3,p) triangle. This results in a formula

Thus X(5) has genus 0, X(7) has genus 3, and X(11) has genus 26. For p = 2 or 3, one must additionally take into account the ramification, that is, the presence of order p elements in PSL(2, Z), and the fact that PSL(2, 2) has order 6, rather than 3. There is a more complicated formula for the genus of the modular curve X(N) of any level N that involves divisors of N.

Genus zero

In general a modular function field is a function field of a modular curve (or, occasionally, of some other moduli space that turns out to be an irreducible variety). Genus zero means such a function field has a single transcendental function as generator: for example the j-function generates the function field of X(1) = PSL(2, Z)\H*. The traditional name for such a generator, which is unique up to a Möbius transformation and can be appropriately normalized, is a Hauptmodul (main or principal modular function, plural Hauptmoduln).

The spaces X1(n) have genus zero for n = 1, ..., 10 and n = 12. Since each of these curves is defined over Q and has a Q-rational point, it follows that there are infinitely many rational points on each such curve, and hence infinitely many elliptic curves defined over Q with n-torsion for these values of n. The converse statement, that only these values of n can occur, is Mazur's torsion theorem.

X0(N) of genus one

The modular curves are of genus one if and only if equals one of the 12 values listed in the following table.[2] As elliptic curves over , they have minimal, integral Weierstrass models . This is, and the absolute value of the discriminant is minimal among all integral Weierstrass models for the same curve. The following table contains the unique reduced, minimal, integral Weierstrass models, which means and .[3] The last column of this table refers to the home page of the respective elliptic modular curve on The L-functions and modular forms database (LMFDB).

of genus 1
LMFDB
11 [0, -1, 1, -10, -20] link
14 [1, 0, 1, 4, -6] link
15 [1, 1, 1, -10, -10] link
17 [1, -1, 1, -1, -14] link
19 [0, 1, 1, -9, -15] link
20 [0, 1, 0, 4, 4] link
21 [1, 0, 0, -4, -1] link
24 [0, -1, 0, -4, 4] link
27 [0, 0, 1, 0, -7] link
32 [0, 0, 0, 4, 0] link
36 [0, 0, 0, 0, 1] link
49 [1, -1, 0, -2, -1] link

Relation with the Monster group

Modular curves of genus 0, which are quite rare, turned out to be of major importance in relation with the monstrous moonshine conjectures. First several coefficients of q-expansions of their Hauptmoduln were computed already in the 19th century, but it came as a shock that the same large integers show up as dimensions of representations of the largest sporadic simple group Monster.

Another connection is that the modular curve corresponding to the normalizer Γ0(p)+ of Γ0(p) in SL(2, R) has genus zero if and only if p is 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 or 71, and these are precisely supersingular primes in moonshine theory, i.e. the prime factors of the order of the monster group. The result about Γ0(p)+ is due to Jean-Pierre Serre, Andrew Ogg and John G. Thompson in the 1970s, and the subsequent observation relating it to the monster group is due to Ogg, who wrote up a paper offering a bottle of Jack Daniel's whiskey to anyone who could explain this fact, which was a starting point for the theory of monstrous moonshine.[4]

The relation runs very deep and, as demonstrated by Richard Borcherds, it also involves generalized Kac–Moody algebras. Work in this area underlined the importance of modular functions that are meromorphic and can have poles at the cusps, as opposed to modular forms, that are holomorphic everywhere, including the cusps, and had been the main objects of study for the better part of the 20th century.

See also

References

  1. ^ Serre, Jean-Pierre (1977), Cours d'arithmétique, Le Mathématicien, vol. 2 (2nd ed.), Presses Universitaires de France
  2. ^ Birch, Bryan; Kuyk, Willem, eds. (1975). Modular functions of one variable IV. Lecture Notes in Mathematics. Vol. 476. Berlin, Heidelberg: Springer-Verlag. p. 79. ISBN 3-540-07392-2.
  3. ^ Ligozat, Gerard (1975). "Courbes modulaires de genre 1" (PDF). Bulletin de la Société Mathématique de France. 43: 44–45. Retrieved 2022-11-06.
  4. ^ Ogg (1974)

Read other articles:

Patricio O'WardPato O'Ward dalam Grand Prix Long Beach 2021Kebangsaan MeksikoLahirPatricio O'Ward Junco6 Mei 1999 (umur 24)Monterrey, Nuevo León, MeksikoKarier Seri IndyCar41 lomba dalam kurun waktu 5 tahunTimNo. 5 (Arrow McLaren SP)Hasil terbaik3rd (2021)Lomba pertama2018 GoPro Grand Prix of Sonoma (Sonoma)Lomba terakhirTemplat:Latest IndyCarMenang pertama2021 XPEL 375 (Texas)Menang terakhir2021 Chevrolet Detroit Grand Prix Race 2 (Detroit) Menang Podium Pole 2 9 4 Terakhir diperbarui ...

 

Governor of TabascoIncumbentCarlos Manuel Merino Campossince August 26, 2021Term lengthSix years, non-renewable List of governors of the Mexican state of Tabasco Name Party Start End Notes Carlos Manuel Merino Campos MORENA 2021 present Served as interim governor when Adán August López requested license. Adán Augusto López Hernández[1] MORENA 2019 2021 Arturo Núñez Jiménez PRD 2013 2018 Andrés Rafael Granier Melo  PRI 2007 2012 In jail serving his sentence, due to c...

 

Charles sang PemberaniCharles yang Berani.Adipati BurgundiaBerkuasa15 Juni 1467–5 Januari 1477PendahuluPhilip III yang BaikPenerusMarie dari BurgundiaInformasi pribadiKelahiran(1433-11-10)10 November 1433DijonKematian5 Januari 1477(1477-01-05) (umur 43)Nancy, Kadipaten LorraineWangsaDinasti ValoisAyahPhilip III yang BaikIbuIsabella dari PortugalPasanganCatherine dari Prancis Isabella dari Bourbon Margaret dari York Charles yang Berani (Prancis: Charles le Téméraire), juga disebut Cha...

Computer system for running video games A collection of various classic video game consoles at a game show in 2010 Video games Platforms Arcade video game Console game Game console Home console Handheld console Electronic game Audio game Electronic handheld Online game Browser game Social-network game Mobile game PC game Linux Mac Virtual reality game Genres Action Beat 'em up Hack and slash Fighting Platform Shooter Survival Battle royale Action-adventure Stealth Adventure Interactive fictio...

 

Santo PausHilariusAwal masa kepausan17 November (?) 461Akhir masa kepausan28 Februari (?) 468PendahuluLeo IPenerusSimplisiusInformasi pribadiNama lahirHilarus atau HilariusLahirtidak diketahuiSardinia, ItaliaWafat28 Februari (?) 468Roma, Italia Paus Hilarius (juga disebut Hilarus) adalah Paus Gereja Katolik Roma sejak tahun 461 hingga 28 Februari 468.[1][2] Ia dikanonisasi sebagai santo setelah kematiannya.[2] Hilarius merupakan diakon agung Roma ketika terpilih sebaga...

 

Anderias Rentanubun Bupati Maluku Tenggara ke-11Masa jabatan31 Oktober 2008 – 31 Oktober 2018PresidenSusilo Bambang Yudhoyono Joko WidodoGubernurKarel Albert Ralahalu Said AssagaffWakilYunus Serang PendahuluHerman KoedoeboenPenggantiM. Thaher Hanubun Informasi pribadiLahir1 Desember 1962 (umur 61)Langgur, MalukuKebangsaanIndonesiaSuami/istriDra. Benardeth WakofanAnakRian A Rentanubun Adelia D Rentanubun Krisna A RentanubunSunting kotak info • L • B Ir. Anderi...

UzbekistanJulukanOq boʻrilar/(White Wolves)AsosiasiFederasi Sepak Bola UzbekistanKonfederasiAFC (Asia)Sub-konfederasiCAFA (Asia Tengah)Stadion kandangStadion Pakhtakor MarkaziyKode FIFAUZB Warna pertama Warna kedua Piala Dunia U-20 FIFAPenampilan4 (Pertama kali pada 2003)Hasil terbaikQuarterfinals: 2013, 2015Kejuaraan U-19 AFCPenampilan7 (Pertama kali pada 2002)Hasil terbaik Runners-up, 2008 Tim nasional sepak bola U-20 Uzbekistan mewakili Uzbekistan dalam kompetisi sepak bola internasional ...

 

Odalisque dengan seorang budak oleh Jean Auguste Dominique Ingres, pada tahun 1842 Odalisque (bahasa Turki Odalık) adalah seorang budak belia perempuan yang bisa naik pangkatnya menjadi selir atau bahkan istri di seraglio (keputren) Kerajaan Ottoman. Biasanya mereka adalah bagian dari harem sang Sultan. Etimologi Di Dunia Barat kata ini dikenal dalam bentuk bahasa Prancis dan awalnya berasal dari bahasa Turki odalık, yang artinya adalah pembantu kamar dari kata oda, yang artinya adalah kama...

 

طواف إينكو 2011 (بالإنجليزية: Eneco Tour 2011)‏  طواف العالم للدراجات 2011 السباق 20 من 27 السلسلة طواف العالم للدراجات 2011 رقم السباق 20 سباقات الموسم 27 التاريخ 8–14 أغسطس التاريخ بداية:8 أغسطس 2011  نهاية:14 أغسطس 2011  عدد المراحل 6 عدد الرياضيين 175 (نقطة البداية)،  و101 (نقطة النهاية)...

Police force rank This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Chief inspector – news · newspapers · books · scholar · JSTOR (October 2007) (Learn how and when to remove this message) Not to be confused with the head of a British inspectorate, titled His Majesty's chief inspector. Chief inspector (Ch Insp...

 

Pour les articles homonymes, voir Leavitt. Sam Leavitt En chapeau blanc, sur le tournage de Sursis pour une nuit (1966), avec les acteurs Eleanor Parker et Stuart Whitman(au sol) et le réalisateur Robert Gist (derrière eux) Données clés Nom de naissance Samuel E. Leavitt Naissance 6 février 1904New YorkÉtat de New York, États-Unis Nationalité Américaine Décès 21 mars 1984 (à 80 ans)Los Angeles (Woodland Hills)Californie, États-Unis Profession Directeur de la photographie Fi...

 

Main article: Rowing at the Summer Olympics Rowingat the Games of the XIV OlympiadVenueHenley Royal Regatta courseDates5–9 August 1948Competitors310 from 27 nations← 19361952 → Rowing at the1948 Summer OlympicsSingle scullsmenDouble scullsmenCoxless pairmenCoxed pairmenCoxless fourmenCoxed fourmenEightmenvte Rowing at the 1948 Summer Olympics featured seven events, for men only. Competitions were held over the Henley Royal Regatta course from 5 to 9 August.&...

Some of this article's listed sources may not be reliable. Please help improve this article by looking for better, more reliable sources. Unreliable citations may be challenged and removed. (December 2022) (Learn how and when to remove this message) 2011 in music By location Asia Canada Europe United Kingdom Ireland Japan Norway South Korea Sweden United States By genre classical country heavy metal hip hop jazz Latin opera rock By topic List of albums released Overview of the events of 2011 ...

 

Chronologies Manifestation contre le président Leonid Koutchma.Données clés 1997 1998 1999  2000  2001 2002 2003Décennies :1970 1980 1990  2000  2010 2020 2030Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République dém...

 

Municipality in Rhineland-Palatinate, GermanyBruchweiler-Bärenbach Municipality Coat of armsLocation of Bruchweiler-Bärenbach within Südwestpfalz district Bruchweiler-Bärenbach Show map of GermanyBruchweiler-Bärenbach Show map of Rhineland-PalatinateCoordinates: 49°6′48″N 7°48′6″E / 49.11333°N 7.80167°E / 49.11333; 7.80167CountryGermanyStateRhineland-PalatinateDistrictSüdwestpfalz Municipal assoc.Dahner FelsenlandGovernment • Mayor (2019&#...

Ruler of the Achaemenid Empire from 530 to 522 BC Cambyses II𐎣𐎲𐎢𐎪𐎡𐎹King of KingsGreat KingKing of PersiaKing of BabylonPharaoh of EgyptKing of CountriesCambyses (left, kneeling) as pharaoh while worshipping an Apis bull (524 BC)King of Kings of the Achaemenid EmpireReign530 – July 522 BCPredecessorCyrus the GreatSuccessorBardiyaCo-rulerCyrus the Great (530 BC)Pharaoh of EgyptReign525 – July 522 BCPredecessorPsamtik IIISuccessorBardiya Royal titulary Horus name ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. CaboloanLuyag na Caboloank. 1406–1576StatusNegara pembayar upeti ke Dinasti MingIbu kotaBinalatonganBahasa yang umum digunakanPangasinan dan bahasa-bahasa Luzon Utara lainnyaAgama Buddha, Animisme, dan agama kesukuanPemerintahanBarangaySejarah&#...

 

This page is an archive of past discussions. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. Review of Combined Small Cell Lung Carcinoma Ladies and gentlemen: I'm guessing that SOMEONE reviewed the above-entitled article, as the New Unreviewed Article tag has now disappeared. Many thanks to whomever did so. I have not been able to find any comments or criticisms on it anywhere, however, and I was just c...

Extinct family of primates PliopithecidaeTemporal range: Early Miocene–Pliocene PreꞒ Ꞓ O S D C P T J K Pg N Dendropithecus macinnesi fossil Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Haplorhini Infraorder: Simiiformes Parvorder: Catarrhini Superfamily: †Pliopithecoidea Family: †Pliopithecidae Subfamilies Crouzeliinae Pliopithecinae Dionysopithecinae The family Pliopithecidae is an extinct family of fossil ...

 

Athletics at the2000 Summer OlympicsTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomenSprint hurdlesmenwomen400 m hurdlesmenwomen3000 msteeplechasemen4 × 100 m relaymenwomen4 × 400 m relaymenwomenRoad eventsMarathonmenwomen20 km walkmenwomen50 km walkmenField eventsLong jumpmenwomenTriple jumpmenwomenHigh jumpmenwomenPole vaultmenwomenShot putmenwomenDiscus throwmenwomenJavelin throwmenwomenHammer throwmenwomenCombined eventsCombine...