Generalized Kac–Moody algebra

In mathematics, a generalized Kac–Moody algebra is a Lie algebra that is similar to a Kac–Moody algebra, except that it is allowed to have imaginary simple roots. Generalized Kac–Moody algebras are also sometimes called GKM algebras, Borcherds–Kac–Moody algebras, BKM algebras, or Borcherds algebras. The best known example is the monster Lie algebra.

Motivation

Finite-dimensional semisimple Lie algebras have the following properties:

  • They have a nondegenerate symmetric invariant bilinear form (,).
  • They have a grading such that the degree zero piece (the Cartan subalgebra) is abelian.
  • They have a (Cartan) involution w.
  • (a, w(a)) is positive if a is nonzero.

For example, for the algebras of n by n matrices of trace zero, the bilinear form is (a, b) = Trace(ab), the Cartan involution is given by minus the transpose, and the grading can be given by "distance from the diagonal" so that the Cartan subalgebra is the diagonal elements.

Conversely one can try to find all Lie algebras with these properties (and satisfying a few other technical conditions). The answer is that one gets sums of finite-dimensional and affine Lie algebras.

The monster Lie algebra satisfies a slightly weaker version of the conditions above: (a, w(a)) is positive if a is nonzero and has nonzero degree, but may be negative when a has degree zero. The Lie algebras satisfying these weaker conditions are more or less generalized Kac–Moody algebras. They are essentially the same as algebras given by certain generators and relations (described below).

Informally, generalized Kac–Moody algebras are the Lie algebras that behave like finite-dimensional semisimple Lie algebras. In particular they have a Weyl group, Weyl character formula, Cartan subalgebra, roots, weights, and so on.

Definition

A symmetrized Cartan matrix is a (possibly infinite) square matrix with entries such that

  • if
  • is an integer if

The universal generalized Kac–Moody algebra with given symmetrized Cartan matrix is defined by generators and and and relations

  • if , 0 otherwise
  • ,
  • for applications of or if
  • if

These differ from the relations of a (symmetrizable) Kac–Moody algebra mainly by allowing the diagonal entries of the Cartan matrix to be non-positive. In other words, we allow simple roots to be imaginary, whereas in a Kac–Moody algebra simple roots are always real.

A generalized Kac–Moody algebra is obtained from a universal one by changing the Cartan matrix, by the operations of killing something in the center, or taking a central extension, or adding outer derivations.

Some authors give a more general definition by removing the condition that the Cartan matrix should be symmetric. Not much is known about these non-symmetrizable generalized Kac–Moody algebras, and there seem to be no interesting examples.

It is also possible to extend the definition to superalgebras.

Structure

A generalized Kac–Moody algebra can be graded by giving ei degree 1, fi degree −1, and hi degree 0.

The degree zero piece is an abelian subalgebra spanned by the elements hi and is called the Cartan subalgebra.

Properties

Most properties of generalized Kac–Moody algebras are straightforward extensions of the usual properties of (symmetrizable) Kac–Moody algebras.

Examples

Most generalized Kac–Moody algebras are thought not to have distinguishing features. The interesting ones are of three types:

There appear to be only a finite number of examples of the third type. Two examples are the monster Lie algebra, acted on by the monster group and used in the monstrous moonshine conjectures, and the fake monster Lie algebra. There are similar examples associated to some of the other sporadic simple groups.

It is possible to find many examples of generalized Kac–Moody algebras using the following principle: anything that looks like a generalized Kac–Moody algebra is a generalized Kac–Moody algebra. More precisely, if a Lie algebra is graded by a Lorentzian lattice and has an invariant bilinear form and satisfies a few other easily checked technical conditions, then it is a generalized Kac–Moody algebra. In particular one can use vertex algebras to construct a Lie algebra from any even lattice. If the lattice is positive definite it gives a finite-dimensional semisimple Lie algebra, if it is positive semidefinite it gives an affine Lie algebra, and if it is Lorentzian it gives an algebra satisfying the conditions above that is therefore a generalized Kac–Moody algebra. When the lattice is the even 26 dimensional unimodular Lorentzian lattice the construction gives the fake monster Lie algebra; all other Lorentzian lattices seem to give uninteresting algebras.

References

  • Kac, Victor G. (1994). Infinite dimensional Lie algebras (3rd ed.). New York: Cambridge University Press. ISBN 0-521-46693-8.
  • Wakimoto, Minoru (2001). Infinite dimensional Lie algebras. Providence, Rhode Island: American Mathematical Society. ISBN 0-8218-2654-9.
  • Ray, Urmie (2006). Automorphic Forms and Lie Superalgebras. Dordrecht: Springer. ISBN 1-4020-5009-7.

Read other articles:

Para la carrera de automovilismo del mismo nombre, véase Gran Premio de Alemania. Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 27 de julio de 2008. Sachsenring Ubicación Hohenstein-Ernstthal, Sajonia, AlemaniaEventos Campeonato del Mundo de MotociclismoLongitud 3.700 km kmCurvas 13Vuelta récord 1'21.225 (MotoGP)Johann Zarco Prima Pramac Racing (2023)[editar datos en Wikidata] El Gran Premio de Alema...

Bài viết này trong loại bàiKinh tế học   Các nền kinh tế theo vùng  Châu Phi · Bắc Mỹ Nam Mỹ · Châu Á Châu Âu · Châu Đại Dương Đề cương các chủ đề Phân loại tổng quát Kinh tế học vi mô · Kinh tế học vĩ mô Lịch sử tư tưởng kinh tế Lý luận · Các phương pháp không chính thống Các phương pháp kỹ thuật Toán học &#...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) تيم والاس   معلومات شخصية الميلاد 6 أغسطس 1984 (39 سنة)  أنكوريج  مواطنة الولايات المتحدة  الوزن 207 رطل  الحياة العملية المدرسة الأم جامعة نوتر دام ...

Скаче червона кіннотарос. Скачет красная конница Творець: Казимир МалевичЧас створення: 1928—1932Висота: 91 смШирина: 140 смМатеріал: ПолотноТехніка: ОліяЗберігається: Санкт-ПетербургМузей: Державний Російський музей  Скаче червона кіннота у Вікісховищі «Скаче червона к

Портрет Лоренцо Соранцо Автор Якопо Робусті, від. як Тінторетто Час створення 1553 Розміри 114 × 95,5 см Матеріал полотно, олія Місцезнаходження Музей історії мистецтв (Відень) «Портрет Лоренцо Соранцо» (італ. Ritratto di Lorenzo Soranzo) — картина італійського живописця Якопо Робусті �...

2010 video game This article is about the 2010 video game. For other uses, see Goldeneye (disambiguation). 2010 video gameGoldenEye 007Developer(s)Eurocomn-Space (DS)Publisher(s)ActivisionJP: Nintendo(Wii)Writer(s)Bruce Feirstein[1]Composer(s)David Arnold[2]Kevin Kiner[3]SeriesJames BondPlatform(s)WiiNintendo DSPlayStation 3Xbox 360ReleaseOriginalNA: 2 November 2010AU: 3 November 2010EU: 5 November 2010JP: 30 June 2011 (Wii)ReloadedNA: 1 November 2011EU: 4 November 201...

2008 single by Lady AntebellumLookin' for a Good TimeSingle by Lady Antebellumfrom the album Lady Antebellum ReleasedJune 9, 2008GenreCountryLength3:07LabelCapitol NashvilleSongwriter(s)Hillary ScottCharles KelleyDave HaywoodKeith FolleséProducer(s)Victoria ShawPaul WorleyLady Antebellum singles chronology Love Don't Live Here (2007) Lookin' for a Good Time (2008) I Run to You (2009) Music videoLookin' for a Good Time at CMT.com Lookin' for a Good Time is a song recorded by American country ...

1994 international environmental treaty UNFCCCUnited Nations Framework Convention on Climate ChangeTypeMultilateral environmental agreementContextEnvironmentalismDrafted9 May 1992 (1992-05-09)Signed4–14 June 1992 20 June 1992 – 19 June 1993LocationRio de Janeiro, Brazil New York, United StatesEffective21 March 1994 (1994-03-21)ConditionRatification by 50 statesSignatories165Parties198DepositarySecretary-General of the United NationsLanguages Arabic Chinese En...

Clifton HillStasiun komuter PTVLokasiHoddle Street, Clifton HillMelbourne, VictoriaAustraliaKoordinat37°47′19″S 144°59′43″E / 37.7887°S 144.9954°E / -37.7887; 144.9954Koordinat: 37°47′19″S 144°59′43″E / 37.7887°S 144.9954°E / -37.7887; 144.9954PemilikVicTrackPengelolaMetro TrainsJalur  Hurstbridge  Mernda Jumlah peron2 sisiJumlah jalur2KonstruksiJenis strukturTanahParkir90Fasilitas sepeda17Akses difabe...

Bosnian association football club This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: FK Rudar Ugljevik – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this template message) Football clubRudar UgljevikFull nameFudbalski klub Rudar UgljevikFounded1925GroundNovi Gradski StadionCapacity5,000Ch...

Political party in Catalonia Poble Lliure Free PeopleFounded2014HeadquartersC/ del Túria, 58 - València C/ Elisi, 20 - BarcelonaYouth wingLa ForjaIdeologySocialismCatalan independenceFeminismPaïsos CatalansPolitical positionLeft-wingNational affiliationFront RepublicàRegional affiliationPopular Unity Candidacy–Constituent Call (CUP–CC)Websitepoblelliure.catPolitics of CataloniaPolitical partiesElections Poble Lliure (English: Free People) is a Catalan socialist and pro indepe...

2017 single by Green DayRevolution RadioSingle by Green Dayfrom the album Revolution Radio ReleasedMay 16, 2017 (2017-05-16)RecordedJanuary 15 – July 24, 2016 at Otis in Oakland, CaliforniaGenre Punk rock[1][2] pop-punk[3] Length3:01LabelRepriseSongwriter(s) Billie Joe Armstrong Mike Dirnt Tré Cool Producer(s)Green DayGreen Day singles chronology Still Breathing (2016) Revolution Radio (2017) Father of All... (2019) Music videoRevolution Radio on...

У этого термина существуют и другие значения, см. Нагано (значения). Префектура Нагано長野県 Префектура Нагано на карте Японии Карта префектуры Нагано Расположение Страна Япония Регион Тюбу Остров Хонсю Координаты 36°39′05″ с. ш. 138°10′52″ в. д.HGЯO Информация Админи...

American professional women's lacrosse league Athletes Unlimited LacrosseSportWomen's LacrosseFounded2020Inaugural season2021Country USAMost recentchampion(s)Taylor MorenoTV partner(s)Various ESPN PlatformsOfficial websiteAthletes Unlimited Athletes Unlimited Lacrosse is a professional women's lacrosse league. It was founded in 2020 and held its inaugural season was in 2021. League format Athletes Unlimited does not feature a traditional sports model. rather, they use a point system to d...

Japanese football club Football clubThespakusatsu Gunma ザスパクサツ群馬Nickname(s)Thespa (ザスパ, Zasupa)Founded1995; 28 years ago (1995)StadiumShoda Shoyu Stadium GunmaMaebashi, GunmaCapacity15,253 peopleOwnerKusatsu Onsen Football ClubChairmanTomohiko NaraManagerTsuyoshi OtsukiLeagueJ2 League2023J2 League, 11th of 22WebsiteClub website Home colours Away colours Current season Thespakusatsu Gunma (ザスパクサツ群馬, Zasupakusatsu Gunma) is a professional ...

Philippine thriller drama series This article is about the 2023 Philippine series. For the 2006 television series, see Linlang (2006 TV series). LinlangPromotional posterGenre Thriller Drama Mystery Suspense Romance Written byDavid DiucoDirected by FM Reyes Jojo Saguin Starring Kim Chiu Paulo Avelino JM de Guzman Country of originPhilippinesOriginal languageFilipinoNo. of seasons1No. of episodes14ProductionCamera setupSingle-cameraRunning time56–61 minutesProduction companyDreamscape Entert...

SMAN 3 YogyakartaInformasiDidirikan5 Juli 1918JenisSekolah NegeriAkreditasiA (2018)Nomor Statistik Sekolah301046002001Nomor Pokok Sekolah Nasional20403178Kepala SekolahKusworo, S.Pd., M.Hum.Jumlah kelas21 Kelas RegulerJurusan atau peminatanIPA dan IPSRentang kelasX IPA, X IPS, XI IPA, XI IPS, XII IPA, XII IPSKurikulumKurikulum 2013Jumlah siswa672 (enam ratus tujuh puluh dua)‎NEM terendah283.00 (2018-2019)NEM tertinggi399.50 (2018-2019)Nilai masuk rata-rata371.35 (2018-2019)Al...

  ميّز عن زكريا بن برخيا.   ميّز عن زكريا. زكريا يهوياداع   معلومات شخصية تاريخ الوفاة القرن 9 ق.م  سبب الوفاة رجم  مواطنة مملكة يهوذا  الأب يهوياداع  الحياة العملية تعلم لدى يهوياداع  التلامذة المشهورون هوشع  المهنة كهنة هارونيون  تعديل مصدري - ت...

Raja al-Alam Ugar Pik-Pik Sekar Machmud Singgirei RumagesanRaja al-Alam Ugar Pik-Pik SekarIllustration of Machmud Singgirei RumagesanReign1915PredecessorRaja of Kabituwar Pandai of Congan Raja of Sekar Saban Pipi RumagesanSuccessorAmir Syahdan Rumagesan [1]Born(1885-12-27)27 December 1885Kokas, Afdeeling FakfakDied5 July 1964(1964-07-05) (aged 78)Jakarta, IndonesiaBurialTrikora Heroes' Cemetery Kokas, Fakfak RegencySpouseNoen, Princess of Laha Janiba, Princess of Gowa Sultanate&#...

Scottish merchant and politician Sir Robert PrestonSir Robert Preston, portrait by William DickinsonMember of Parliament for DoverIn office1784–1790Member of Parliament for CirencesterIn office1792–1806 Personal detailsBorn(1740-04-21)21 April 1740Valleyfield, Fife, ScotlandDied7 May 1834(1834-05-07) (aged 94)Valleyfield, Fife, ScotlandSpouse Elizabeth Brown ​ ​(m. 1790; died 1832)​Parents Sir George Preston, 4th Baronet of Valleyfield ...