Well-order

Transitive binary relations
Symmetric Antisymmetric Connected Well-founded Has joins Has meets Reflexive Irreflexive Asymmetric
Total, Semiconnex Anti-
reflexive
Equivalence relation Green tickY Green tickY
Preorder (Quasiorder) Green tickY
Partial order Green tickY Green tickY
Total preorder Green tickY Green tickY
Total order Green tickY Green tickY Green tickY
Prewellordering Green tickY Green tickY Green tickY
Well-quasi-ordering Green tickY Green tickY
Well-ordering Green tickY Green tickY Green tickY Green tickY
Lattice Green tickY Green tickY Green tickY Green tickY
Join-semilattice Green tickY Green tickY Green tickY
Meet-semilattice Green tickY Green tickY Green tickY
Strict partial order Green tickY Green tickY Green tickY
Strict weak order Green tickY Green tickY Green tickY
Strict total order Green tickY Green tickY Green tickY Green tickY
Symmetric Antisymmetric Connected Well-founded Has joins Has meets Reflexive Irreflexive Asymmetric
Definitions, for all and
Green tickY indicates that the column's property is always true for the row's term (at the very left), while indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by Green tickY in the "Symmetric" column and in the "Antisymmetric" column, respectively.

All definitions tacitly require the homogeneous relation be transitive: for all if and then
A term's definition may require additional properties that are not listed in this table.

In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering.

Every non-empty well-ordered set has a least element. Every element s of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than s. There may be elements, besides the least element, that have no predecessor (see § Natural numbers below for an example). A well-ordered set S contains for every subset T with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of T in S.

If ≤ is a non-strict well ordering, then < is a strict well ordering. A relation is a strict well ordering if and only if it is a well-founded strict total order. The distinction between strict and non-strict well orders is often ignored since they are easily interconvertible.

Every well-ordered set is uniquely order isomorphic to a unique ordinal number, called the order type of the well-ordered set. The well-ordering theorem, which is equivalent to the axiom of choice, states that every set can be well ordered. If a set is well ordered (or even if it merely admits a well-founded relation), the proof technique of transfinite induction can be used to prove that a given statement is true for all elements of the set.

The observation that the natural numbers are well ordered by the usual less-than relation is commonly called the well-ordering principle (for natural numbers).

Ordinal numbers

Every well-ordered set is uniquely order isomorphic to a unique ordinal number, called the order type of the well-ordered set. The position of each element within the ordered set is also given by an ordinal number. In the case of a finite set, the basic operation of counting, to find the ordinal number of a particular object, or to find the object with a particular ordinal number, corresponds to assigning ordinal numbers one by one to the objects. The size (number of elements, cardinal number) of a finite set is equal to the order type.[1] Counting in the everyday sense typically starts from one, so it assigns to each object the size of the initial segment with that object as last element. Note that these numbers are one more than the formal ordinal numbers according to the isomorphic order, because these are equal to the number of earlier objects (which corresponds to counting from zero). Thus for finite n, the expression "n-th element" of a well-ordered set requires context to know whether this counts from zero or one. In a notation "β-th element" where β can also be an infinite ordinal, it will typically count from zero.

For an infinite set the order type determines the cardinality, but not conversely: well-ordered sets of a particular cardinality can have many different order types (see § Natural numbers, below, for an example). For a countably infinite set, the set of possible order types is uncountable.

Examples and counterexamples

Natural numbers

The standard ordering ≤ of the natural numbers is a well ordering and has the additional property that every non-zero natural number has a unique predecessor.

Another well ordering of the natural numbers is given by defining that all even numbers are less than all odd numbers, and the usual ordering applies within the evens and the odds:

This is a well-ordered set of order type ω + ω. Every element has a successor (there is no largest element). Two elements lack a predecessor: 0 and 1.

Integers

Unlike the standard ordering ≤ of the natural numbers, the standard ordering ≤ of the integers is not a well ordering, since, for example, the set of negative integers does not contain a least element.

The following binary relation R is an example of well ordering of the integers: x R y if and only if one of the following conditions holds:

  1. x = 0
  2. x is positive, and y is negative
  3. x and y are both positive, and xy
  4. x and y are both negative, and |x| ≤ |y|

This relation R can be visualized as follows:

R is isomorphic to the ordinal number ω + ω.

Another relation for well ordering the integers is the following definition: if and only if

This well order can be visualized as follows:

This has the order type ω.

Reals

The standard ordering ≤ of any real interval is not a well ordering, since, for example, the open interval does not contain a least element. From the ZFC axioms of set theory (including the axiom of choice) one can show that there is a well order of the reals. Also Wacław Sierpiński proved that ZF + GCH (the generalized continuum hypothesis) imply the axiom of choice and hence a well order of the reals. Nonetheless, it is possible to show that the ZFC+GCH axioms alone are not sufficient to prove the existence of a definable (by a formula) well order of the reals.[2] However it is consistent with ZFC that a definable well ordering of the reals exists—for example, it is consistent with ZFC that V=L, and it follows from ZFC+V=L that a particular formula well orders the reals, or indeed any set.

An uncountable subset of the real numbers with the standard ordering ≤ cannot be a well order: Suppose X is a subset of well ordered by . For each x in X, let s(x) be the successor of x in ordering on X (unless x is the last element of X). Let whose elements are nonempty and disjoint intervals. Each such interval contains at least one rational number, so there is an injective function from A to There is an injection from X to A (except possibly for a last element of X, which could be mapped to zero later). And it is well known that there is an injection from to the natural numbers (which could be chosen to avoid hitting zero). Thus there is an injection from X to the natural numbers, which means that X is countable. On the other hand, a countably infinite subset of the reals may or may not be a well order with the standard . For example,

  • The natural numbers are a well order under the standard ordering .
  • The set has no least element and is therefore not a well order under standard ordering .

Examples of well orders:

  • The set of numbers has order type ω.
  • The set of numbers has order type ω2. The previous set is the set of limit points within the set. Within the set of real numbers, either with the ordinary topology or the order topology, 0 is also a limit point of the set. It is also a limit point of the set of limit points.
  • The set of numbers has order type ω + 1. With the order topology of this set, 1 is a limit point of the set, despite being separated from the only limit point 0 under the ordinary topology of the real numbers.

Equivalent formulations

If a set is totally ordered, then the following are equivalent to each other:

  1. The set is well ordered. That is, every nonempty subset has a least element.
  2. Transfinite induction works for the entire ordered set.
  3. Every strictly decreasing sequence of elements of the set must terminate after only finitely many steps (assuming the axiom of dependent choice).
  4. Every subordering is isomorphic to an initial segment.

Order topology

Every well-ordered set can be made into a topological space by endowing it with the order topology.

With respect to this topology there can be two kinds of elements:

  • isolated points — these are the minimum and the elements with a predecessor.
  • limit points — this type does not occur in finite sets, and may or may not occur in an infinite set; the infinite sets without limit point are the sets of order type ω, for example the natural numbers

For subsets we can distinguish:

  • Subsets with a maximum (that is, subsets that are bounded by themselves); this can be an isolated point or a limit point of the whole set; in the latter case it may or may not be also a limit point of the subset.
  • Subsets that are unbounded by themselves but bounded in the whole set; they have no maximum, but a supremum outside the subset; if the subset is non-empty this supremum is a limit point of the subset and hence also of the whole set; if the subset is empty this supremum is the minimum of the whole set.
  • Subsets that are unbounded in the whole set.

A subset is cofinal in the whole set if and only if it is unbounded in the whole set or it has a maximum that is also maximum of the whole set.

A well-ordered set as topological space is a first-countable space if and only if it has order type less than or equal to ω1 (omega-one), that is, if and only if the set is countable or has the smallest uncountable order type.

See also

References

  1. ^ Bonnet, Rémi; Finkel, Alain; Haddad, Serge; Rosa-Velardo, Fernando (2013). "Ordinal theory for expressiveness of well-structured transition systems". Information and Computation. 224: 1–22. doi:10.1016/j.ic.2012.11.003. MR 3016456.
  2. ^ Feferman, S. (1964). "Some Applications of the Notions of Forcing and Generic Sets". Fundamenta Mathematicae. 56 (3): 325–345. doi:10.4064/fm-56-3-325-345.

Read other articles:

Dattu Baban BhokanalDattu Bhokanal meraih Penghargaan Shiv Chhatrapati dari Pemerintah MaharashtraInformasi pribadiLahir05 April 1991 (umur 32)Talegaon Rohi Tal: Chandwad, Dist: Nashik, Maharastra, India Karier militerPengabdian IndiaDinas/cabang Angkatan Darat IndiaPangkat Naib Subedar OlahragaNegara IndiaOlahragaRowingPrestasi dan gelarPeringkat dunia tertinggiPeringkat ke-13 di dunia Rekam medali Mewakili  India Dayung putra Turnamen 1 2 3 Kejuaraan Nasional Senior...

 

 

American physician and scientist (1744–1819) For other people named John Jeffries, see John Jeffries (disambiguation). John JeffriesJohn JeffriesBorn(1745-02-05)5 February 1745BostonDied16 September 1819(1819-09-16) (aged 75)BostonResting placeGranary Burying GroundNationalityAmericanEducationHarvard College, University of AberdeenOccupation(s)physician, surgeonEmployerBritish ArmyKnown forballooningTitleSurgeon General of British Forces in North America 1776–1780Spouse(s)Sa...

 

 

Untuk judul yang sama, lihat Penjaga Hati (miniseri). Penjaga HatiGenre Drama Religi PembuatTripar Multivision PlusSkenarioDono IndartoCeritaDono IndartoSutradara Gul Khan Akbar Bhakti Pemeran Bunga Citra Lestari Ricky Harun Dea Imut Dimas Seto Devi Permatasari Boy Tirayoh Lagu pembukaHampa — Ari LassoLagu penutupHampa — Ari LassoPenata musikIwang ModulusNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode26 (daftar episode)ProduksiProduser eksekutifGobind Punjab...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Tidore, Tidore Kepulauan – berita · surat kabar · buku · cendekiawan · JSTOR Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. ...

 

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

 

 

Liga 3 DIY 2019Musim2019Tanggal12 Juli - 7 September 2019JuaraSleman UnitedJumlah pertandingan36Jumlah gol117 (3,25 per pertandingan)Pencetak golterbanyakSarjono - PS Protaba Bantul (14 gol)[1]Kemenangan kandangterbesarUAD FC 6 - 0 Jogja Istimewa Football[2]Kemenangan tandangterbesarJogja Istimewa Football 1 - 5 Persikup Kulonprogo,[3] Rajawali Gunung Kidul 1 - 5 PS Protaba Bantul[4]Pertandingan terbanyak golUAD FC 6 - 4 Rajawali Gunung Kidul[5]Men...

Pertempuran di Lembah ZefataKerajaan Yehuda (warna hijau muda pada peta)TanggalAwal abad ke-9 SM, antara tahun 911-870 SM pada masa pemerintahan Asa, raja YehudaLokasiLembah Zefata dekat Maresa, Kerajaan Yehuda (sekarang Israel)Hasil Kemenangan mutlak Yehuda Serangan-serangan orang Mesir ke Yehuda berhenti sampai pertengahan abad ke-6 SM.Perubahanwilayah Orang Mesir dan Etiopia gagal menyerang YehudaPihak terlibat Kerajaan Yehuda Pasukan Mesir dan pasukan EtiopiaTokoh dan pemimpin Asa, raja Y...

 

 

Untuk pengarang asal Australia, lihat Jane R. Goodall. DameJane GoodallDBEGoodall di Tanzania tahun 2018LahirValerie Jane Morris-Goodall3 April 1934 (umur 90)London, Inggris, Britania RayaAlmamaterNewnham College, CambridgeDarwin College, CambridgeDikenal atasPenelitian simpanse, pelestarian, kesejahteraan hewanSuami/istriHugo van Lawick ​ ​(m. 1964; cer 1974)​ Derek Bryceson ​ ​(m. 1975; meninggal 1980...

 

 

Japanese racing driver Shigeaki HattoriNationalityJapaneseBorn (1963-11-03) November 3, 1963 (age 60)Okayama, OkayamaRetired2005Indy Racing League IndyCar SeriesYears active2000–2003TeamsTreadway-Vertex Cunningham RacingBradley MotorsportsA. J. Foyt EnterprisesStarts26Wins0Poles0Best finish13th in 2001Previous series19991996–19981993–1994CART World SeriesIndy LightsAll-Japan Formula Three ChampionshipNASCAR driver NASCAR Craftsman Truck Series career10 races run over 1 yearBest fin...

Order of merit in Mauritius Order of the Star and Key of the Indian Ocean TypeOrder of meritCountry MauritiusMottoStella Clavisque Maris Indici (translated: Star and key of the Indian Ocean)Awarded forAt the President's pleasureStatusCurrently constitutedChancellorPresident of the Republic of MauritiusGradesGrand Commander (GCSK)Grand Officer (GOSK)Commander (CSK)Officer (OSK)Member (MSK)PrecedenceNext (higher)NoneNext (lower)President's Distinguished Service MedalRibbon bar of GCSK, GOS...

 

 

普密蓬·阿杜德ภูมิพลอดุลยเดช泰国先王普密蓬·阿杜德(官方肖像) 泰國國王統治1946年6月9日-2016年10月13日(70年126天)加冕1950年5月5日前任阿南塔玛希敦繼任玛哈·哇集拉隆功总理见列表出生(1927-12-05)1927年12月5日 美國马萨诸塞州剑桥奥本山醫院(英语:Mount Auburn Hospital)逝世2016年10月13日(2016歲—10—13)(88歲) 泰國曼谷西里拉醫院安葬曼谷僧...

 

 

Al-Kafi Sampul Al-KafiPengarangMuhammad bin Ya'qub al-KulainiBahasaArabBagian dari seri artikel mengenaiSyiah Peribadatan Penerus Nabi Muhammad Imamah Duka Muharram Tawassul Paham Kebohongan Ayatullah Arbain Hari perayaan Syiah Asyura Tabuik Arbain Maulud Idulfitri Iduladha Idulghadir Sejarah Ayat pemurnian Hadits dua hal berat Mubāhalah Khumm Rumah Fatimah Fitnah Pertama Fitnah Kedua Pembunuhan Ali Pertempuran Karbala Cabang-cabang Syiah Zaidiyah Syiah Dua Belas Imam Ja'fari Akhbari Syaiki ...

Airport in Myrtle Beach, South Carolina, United States For the United States Air Force use of the facility before March 1993, see Myrtle Beach Air Force Base. Myrtle Beach International AirportTerminal at Myrtle Beach International AirportIATA: MYRICAO: KMYRFAA LID: MYRSummaryAirport typePublicOwnerHorry CountyOperatorHorry County Department of Airports[1]ServesMyrtle Beach, South CarolinaElevation AMSL25 ft / 8 mCoordinates33°40′47″N 078°55′42″W / &#x...

 

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

دائرة من الصخور في الولايات المتحدة علم الآثار في الأمريكتين هو دراسة علم الآثار في أمريكا الشمالية، أمريكا الوسطى وأمريكا الجنوبية ومنطقة البحر الكاريبي.[1][2][3] وهذا يشمل دراسة ماقبل التاريخ وما قبل اكتشاف كريستوفر كولومبوس للأمريكيتين وتاريخ شعوب أمريكا ال�...

Akita 秋田市Kota intiDari atas ke bawah, kiri ke kanan: Gunung Taihei, Festival Akita Kantō, Taman Senshū, Akita Port Tower Selion, dan Museum Seni Akita BenderaEmblemLokasi Akita di Prefektur AkitaAkitaLokasi di JepangKoordinat: 39°43′12.1″N 140°6′9.3″E / 39.720028°N 140.102583°E / 39.720028; 140.102583Negara JepangWilayahTōhokuPrefektur AkitaPemerintahan • WalikotaMotomu HozumiLuas • Total906,07 km2 (349,84...

 

 

Stasiun Lalang DB04 Kereta api luar biasa sedang uji coba rangkaianLokasiLalang, Medang Deras, Batu Bara, Sumatera Utara 21258IndonesiaKoordinat3°22′11″N 99°25′27″E / 3.369861°N 99.424227°E / 3.369861; 99.424227Ketinggian+3,56 mOperator Kereta Api IndonesiaDivisi Regional I Sumatera Utara dan Aceh Letakkm 17+700 lintas Bandar Tinggi-Pelabuhan Kuala Tanjung[1] Jumlah peronSatu peron sisi yang cukup tinggiJumlah jalur3 (jalur 2: sepur lurus)LayananDat...

 

 

Graves of the last two Lubavitcher Rebbes in New York City Ohel (Chabad-Lubavitch)אהל חבד ליובאוויטשInterior of the Ohel. The grave of Rabbi Yosef Yitzchak Schneersohn is at right; that of Rabbi Menachem Mendel Schneerson is at left40°41′10″N 73°44′15″W / 40.6860°N 73.7374°W / 40.6860; -73.7374Location226-20 Francis Lewis BoulevardCambria Heights, New YorkTypeTombVisitors50,000+WebsiteWebsite Part of a series onChabad Rebbes Shneur Zalman of...

2001 single by Mai KurakiCan't Forget Your Love/Perfect Crime: Single EditSingle by Mai Kurakifrom the album Perfect CrimeFairy Tale ReleasedAugust 18, 2001Recorded2001GenreJ-popLabelGiza StudioSongwriter(s)Mai KurakiAika OhnoCybersound(Michael Africk, Perry Geyer, Miguel Sa Pessoa) Akihito TokunagaDaisuke IkedaProducer(s)KANONJIMai Kuraki singles chronology Always (2000) Can't Forget Your Love/Perfect Crime: Single Edit (2001) Winter Bells (2001) Can't Forget Your Love/Perfect Crime: Single ...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) كأس العراق 1991–92معلومات عامةالرياضة كرة القدم الفترة 1991-1992 فترة سنة واحدة البلد العراق الفرق المشاركة 42 �...