Ideal (order theory)

In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory.

Definitions

A subset I of a partially ordered set is an ideal, if the following conditions hold:[1][2]

  1. I is non-empty,
  2. for every x in I and y in P, yx implies that y is in I  (I is a lower set),
  3. for every x, y in I, there is some element z in I, such that xz and yz  (I is a directed set).

While this is the most general way to define an ideal for arbitrary posets, it was originally defined for lattices only. In this case, the following equivalent definition can be given: a subset I of a lattice is an ideal if and only if it is a lower set that is closed under finite joins (suprema); that is, it is nonempty and for all x, y in I, the element of P is also in I.[3]

A weaker notion of order ideal is defined to be a subset of a poset P that satisfies the above conditions 1 and 2. In other words, an order ideal is simply a lower set. Similarly, an ideal can also be defined as a "directed lower set".

The dual notion of an ideal, i.e., the concept obtained by reversing all ≤ and exchanging with is a filter.

Frink ideals, pseudoideals and Doyle pseudoideals are different generalizations of the notion of a lattice ideal.

An ideal or filter is said to be proper if it is not equal to the whole set P.[3]

The smallest ideal that contains a given element p is a principal ideal and p is said to be a principal element of the ideal in this situation. The principal ideal for a principal p is thus given by p = {xP | xp}.

Terminology confusion

The above definitions of "ideal" and "order ideal" are the standard ones, [3][4][5] but there is some confusion in terminology. Sometimes the words and definitions such as "ideal", "order ideal", "Frink ideal", or "partial order ideal" mean one another.[6][7]

Prime ideals

An important special case of an ideal is constituted by those ideals whose set-theoretic complements are filters, i.e. ideals in the inverse order. Such ideals are called prime ideals. Also note that, since we require ideals and filters to be non-empty, every prime ideal is necessarily proper. For lattices, prime ideals can be characterized as follows:

A subset I of a lattice is a prime ideal, if and only if

  1. I is a proper ideal of P, and
  2. for all elements x and y of P, in I implies that xI or yI.

It is easily checked that this is indeed equivalent to stating that is a filter (which is then also prime, in the dual sense).

For a complete lattice the further notion of a completely prime ideal is meaningful. It is defined to be a proper ideal I with the additional property that, whenever the meet (infimum) of some arbitrary set A is in I, some element of A is also in I. So this is just a specific prime ideal that extends the above conditions to infinite meets.

The existence of prime ideals is in general not obvious, and often a satisfactory amount of prime ideals cannot be derived within ZF (Zermelo–Fraenkel set theory without the axiom of choice). This issue is discussed in various prime ideal theorems, which are necessary for many applications that require prime ideals.

Maximal ideals

An ideal I is a maximal ideal if it is proper and there is no proper ideal J that is a strict superset of I. Likewise, a filter F is maximal if it is proper and there is no proper filter that is a strict superset.

When a poset is a distributive lattice, maximal ideals and filters are necessarily prime, while the converse of this statement is false in general.

Maximal filters are sometimes called ultrafilters, but this terminology is often reserved for Boolean algebras, where a maximal filter (ideal) is a filter (ideal) that contains exactly one of the elements {a, ¬a}, for each element a of the Boolean algebra. In Boolean algebras, the terms prime ideal and maximal ideal coincide, as do the terms prime filter and maximal filter.

There is another interesting notion of maximality of ideals: Consider an ideal I and a filter F such that I is disjoint from F. We are interested in an ideal M that is maximal among all ideals that contain I and are disjoint from F. In the case of distributive lattices such an M is always a prime ideal. A proof of this statement follows.

Proof

Assume the ideal M is maximal with respect to disjointness from the filter F. Suppose for a contradiction that M is not prime, i.e. there exists a pair of elements a and b such that ab in M but neither a nor b are in M. Consider the case that for all m in M, ma is not in F. One can construct an ideal N by taking the downward closure of the set of all binary joins of this form, i.e. N = { x | xma for some mM}. It is readily checked that N is indeed an ideal disjoint from F which is strictly greater than M. But this contradicts the maximality of M and thus the assumption that M is not prime.

For the other case, assume that there is some m in M with ma in F. Now if any element n in M is such that nb is in F, one finds that (mn) ∨ b and (mn) ∨ a are both in F. But then their meet is in F and, by distributivity, (mn) ∨ (ab) is in F too. On the other hand, this finite join of elements of M is clearly in M, such that the assumed existence of n contradicts the disjointness of the two sets. Hence all elements n of M have a join with b that is not in F. Consequently one can apply the above construction with b in place of a to obtain an ideal that is strictly greater than M while being disjoint from F. This finishes the proof.

However, in general it is not clear whether there exists any ideal M that is maximal in this sense. Yet, if we assume the axiom of choice in our set theory, then the existence of M for every disjoint filter–ideal-pair can be shown. In the special case that the considered order is a Boolean algebra, this theorem is called the Boolean prime ideal theorem. It is strictly weaker than the axiom of choice and it turns out that nothing more is needed for many order-theoretic applications of ideals.

Applications

The construction of ideals and filters is an important tool in many applications of order theory.

History

Ideals were introduced by Marshall H. Stone first for Boolean algebras,[8] where the name was derived from the ring ideals of abstract algebra. He adopted this terminology because, using the isomorphism of the categories of Boolean algebras and of Boolean rings, the two notions do indeed coincide.

Generalization to any posets was done by Frink.[9]

See also

Notes

  1. ^ Taylor (1999), p. 141: "A directed lower subset of a poset X is called an ideal"
  2. ^ Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M. W.; Scott, D. S. (2003). Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications. Vol. 93. Cambridge University Press. p. 3. ISBN 0521803381.
  3. ^ a b c Burris & Sankappanavar 1981, Def. 8.2.
  4. ^ Davey & Priestley 2002, pp. 20, 44.
  5. ^ Frenchman & Hart 2020, pp. 2, 7.
  6. ^ Partial Order Ideal, Wolfram MathWorld, 2002, retrieved 2023-02-26
  7. ^ George M. Bergman (2008), "On lattices and their ideal lattices, and posets and their ideal posets" (PDF), Tbilisi Math. J., 1: 89–103, arXiv:0801.0751
  8. ^ Stone (1934) and Stone (1935)
  9. ^ Frink (1954)

References

About history

Read other articles:

Hyundai GrandeurInformasiProdusenHyundai Motor CompanyMasa produksi1986-sekarangBodi & rangkaKelasFull-size (1986–1998)Mid-size (1998-sekarang)Bentuk kerangkasedan 4 pintuKronologiPendahuluHyundai Granada Hyundai Grandeur (Korea: 현대 그랜저code: ko is deprecated ) adalah sedan mid-size/full-size yang diproduksi oleh Hyundai Motor Company sejak tahun 1986. Sampai tahun 2012, Grandeur telah mengalami perubahan sebanyak 4 kali. Di beberapa negara termasuk Indonesia, mobil ini ju...

 

Ibnu Zubair beralih ke halaman ini. Untuk penjelajah dan ahli geografi Arab, lihat Ibnu Jubair. Abdullah bin Zubairعبد الله ابن الزبيرDirham perak bergaya Sasaniyah, dicetak atas nama Abdullah bin Zubair di Fars pada 91 H/690 MKhalifah (diperdebatkan)[a]Berkuasa683–692PendahuluYazid IPenerusAbdul Malik bin MarwanInformasi pribadiKelahiranMei 624 MMadinah, Hijaz, ArabiaKematianOktober/November 692 M (umur 68)Makkah, HijazPemakamanJannatul Mu'alla, MakkahSukuQuraisy (...

 

Rose Cleveland Ibu Negara Amerika Serikat ke-27 PendahuluEllen ArthurPenggantiFrances Folsom Informasi pribadiLahir(1846-06-13)13 Juni 1846Buffalo, New YorkMeninggal22 November 1918(1918-11-22) (umur 72)Bagni di Lucca, ItaliaHubunganGrover Cleveland (saudara) Evangeline Marr's Whipple (pasangan hidup)PekerjaanIbu Negara Amerika SerikatSunting kotak info • L • B Rose Elizabeth Cleveland (13 Juni 1846 – 22 November 1918) adalah Ibu Negara Amerika Serikat pada ...

ArirangPoster untuk remake 1957 ArirangNama lainHangul아리랑 Alih Aksara yang DisempurnakanArirangMcCune–ReischauerArirang SutradaraNa Woon-gyuProduserYodo TorajoDitulis olehNa Woon-gyuPemeranNa Woon-gyuShin Il-seonNam Gung-unJu In-gyuDistributorChoson Cinema ProductionsTanggal rilis 01 Oktober 1926 (1926-10-01) Durasi(1,599 feet) (9 rol) (sekitar 135 menit)NegaraKoreaBahasaAntarjudul KoreaAnggaran15,000 Won Arirang (Hangul: 아리랑) adalah sebuah film bisu Korea tahun 1926 ...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) سباق باريس روبيه 1909 التاريخ 11 أبريل عدد المراحل 1 المسافة 276 كم الزمن 9 ساعات و3 دقيقة و30 ثانية البلد فرنسا&#...

 

Not to be confused with multiplex cinema. Television channel MulticinemaCountryMexicoBroadcast areaMexicoHeadquartersMexico CityProgrammingLanguage(s)SpanishPicture format480iOwnershipOwnerMVS ComunicacionesSister channelsMVS TVCinelatinoExa TVMultipremierZAZAntena 3LinksWebsitewww.multicinema.com.mx Multicinema (also known as MC) is a Mexican movie programming cable television network owned by MVS Comunicaciones. The cable network was launched along with the wireless cable television company...

English footballer (born 1995) Brad Halliday Halliday playing for York City in 2015Personal informationFull name Bradley Halliday[1]Date of birth (1995-07-10) 10 July 1995 (age 28)[2]Place of birth Redcar, EnglandHeight 5 ft 11 in (1.80 m)[3]Position(s) Defender / MidfielderTeam informationCurrent team Bradford CityNumber 2Youth career2000–2010 Redcar Town2010–2013 Middlesbrough2013 Newcastle United2013–2014 MiddlesbroughSenior career*Years Te...

 

Type of soft, billed hat A New York Yankees baseball cap A baseball cap is a type of soft hat with a rounded crown and a stiff bill[1] projecting in front.[2] The front of the hat typically displays a design or a logo (historically, usually only a sports team, namely a baseball team, or names of relevant companies, when used as a commercial marketing technique). The hat may be fitted to the wearer's head or the back may have elastic, a plastic prong-in-a-hole (multiple holes w...

 

Actor (born 1981) Kunal NayyarNayyar at 2024 Berlin Film FestivalBorn (1981-04-30) 30 April 1981 (age 43)Hammersmith, London, EnglandAlma mater University of Portland (BBA) Temple University (MFA) OccupationActorYears active2004–presentSpouse Neha Kapur ​(m. 2011)​ Kunal Nayyar (/kʊˈnɑːl ˈnaɪ.ər/,[1] kuu-NAHL NY-ər; born 30 April 1981) is a British-born Indian actor.[2] He gained recognition with his portrayal of the charac...

Nighttime programming block on Nickelodeon This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nick at Nite – news · newspapers · books · scholar · JSTOR (July...

 

Bagian dari seri mengenai Sejarah Indonesia Prasejarah Manusia Jawa 1.000.000 BP Manusia Flores 94.000–12.000 BP Bencana alam Toba 75.000 BP Kebudayaan Buni 400 SM Kerajaan Hindu-Buddha Kerajaan Kutai 400–1635 Kerajaan Tarumanagara 450–900 Kerajaan Kalingga 594–782 Kerajaan Melayu 671–1347 Kerajaan Sriwijaya 671–1028 Kerajaan Sunda 662–1579 Kerajaan Galuh 669–1482 Kerajaan Mataram 716–1016 Kerajaan Bali 914–1908 Kerajaan Kahuripan 1019&#...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2010) هذه القائمة غير مكتملة. فضلاً ساهم في تطويرها بإضافة مزيد من المعلومات ولا تنسَ الاستشهاد بمصادر موثوق بها. هذه مقارنة بين عملاء دردشة الأي آر سي ولمحة عامة ع...

TequilaKarakteristikEponimTequila (en) JenisMinuman keras AsalMeksiko KomposisiAgave tequilana BerdasarkanMezcal (en) Kadar alkohol40 [sunting di Wikidata] Tequila (pengucapan bahasa Spanyol: [teˈkila]) adalah minuman distilasi yang terbuat dari tanaman agave yang dibuat di sekitar kota Tequila, 65 kilometer (60 mil) barat laut Guadalajara, di daerah pegunungan (Los Altos) di negara bagian Jalisco di barat Meksiko. Tanah vulkanis di sekitar Tequila dianggap cukup baik bagi pert...

 

Veda Ann BorgAnn Borg pada 1940Lahir(1915-01-11)11 Januari 1915Boston, Massachusetts, Amerika SerikatMeninggal16 Agustus 1973(1973-08-16) (umur 58)Hollywood, California Amerika SerikatNama lainAnn NobleTahun aktif1936–1963Suami/istriPaul Herrick ​ ​(m. 1942; bercerai 1942)​ Andrew V. McLaglen ​ ​(m. 1946; bercerai 1958)​Anak1 Veda Ann Borg (11 Januari 1915 – 16 Agu...

 

Re Denley’s Trust DeedCourtHigh CourtCitation[1969] 1 Ch 373KeywordsCertainty, express trusts Re Denley’s Trust Deed [1969] 1 Ch 373 is an English trusts law case, concerning the policy of the beneficiary principle. It held that so long as the people benefitting from a trust can at least be said to have a direct and tangible interest, so as to have the locus standi to enforce a trust, it would be valid. Facts In 1936 the settlor company, H.H. Martyn & Co. Ltd, from Sunningend Works, ...

American former basketball player (born 1950) Julius ErvingErving in 2016Personal informationBorn (1950-02-22) February 22, 1950 (age 74)East Meadow, New York, U.S.Listed height6 ft 7 in (2.01 m)Listed weight210 lb (95 kg)Career informationHigh schoolRoosevelt (Roosevelt, New York)CollegeUMass (1969–1971)NBA draft1972: 1st round, 12th overall pickSelected by the Milwaukee BucksPlaying career1971–1987PositionSmall forwardNumber32, 6Career history1971–1973Vir...

 

Not to be confused with Cwmavon, Torfaen. Human settlement in WalesCwmafanView across the Afan ValleyCwmafanLocation within Neath Port TalbotPopulation6,538 (2011)[1]OS grid referenceSS774922CommunityCwmafanPrincipal areaNeath Port TalbotPreserved countyWest GlamorganCountryWalesSovereign stateUnited KingdomPost townPORT TALBOTPostcode districtSA12Dialling code01639PoliceSouth WalesFireMid and West WalesAmbulanceWelsh UK ParliamentAberavonS...

 

5th-century BC Athenian military generalFor the Athenian orator, see Demosthenes. DemosthenesPortrait of Demosthenes by Polyeuktos. 1881 Young Peoples' Cyclopedia of Persons and PlacesNative nameΔημοσθένηςDied413 BCSicilyAllegianceAthensYears of service426–413 BCRankGeneralBattles/warsPeloponnesian War Battle of Olpae Battle of Pylos Battle of Sphacteria Sicilian Expedition Demosthenes (Greek: Δημοσθένης, died 413 BC), son of Alcisthenes, was an Athenian general dur...

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Augsburg (Begriffsklärung) aufgeführt. Wappen Deutschlandkarte Basisdaten Koordinaten: 48° 22′ N, 10° 54′ O48.37166666666710.898333333333494Koordinaten: 48° 22′ N, 10° 54′ O Bundesland: Bayern Regierungsbezirk: Schwaben Höhe: 494 m ü. NHN Fläche: 146,85 km2 Einwohner: 303.150 (31. Dez. 2023)[1] Bevölkerungsdichte: 2064 Ei...

 

غرابافيتشا:أرض أحلامي (بالبوسنوية: Grbavica)‏  الصنف فيلم دراما[1][2][3]، وفيلم حربي[4] الموضوع حروب يوغوسلافيا،  واغتصاب،  والأمومة  [لغات أخرى]‏[5]،  وعلاقة الوالدين بالابناء  [لغات أخرى]‏[5]،  ومشاكس الظلام[5]،  وإخفاء ...