Alexandrov topology

In topology, an Alexandrov topology is a topology in which the intersection of every family of open sets is open. It is an axiom of topology that the intersection of every finite family of open sets is open; in Alexandrov topologies the finite qualifier is dropped.

A set together with an Alexandrov topology is known as an Alexandrov-discrete space or finitely generated space.

Alexandrov topologies are uniquely determined by their specialization preorders. Indeed, given any preorder ≤ on a set X, there is a unique Alexandrov topology on X for which the specialization preorder is ≤. The open sets are just the upper sets with respect to ≤. Thus, Alexandrov topologies on X are in one-to-one correspondence with preorders on X.

Alexandrov-discrete spaces are also called finitely generated spaces because their topology is uniquely determined by the family of all finite subspaces. Alexandrov-discrete spaces can thus be viewed as a generalization of finite topological spaces.

Due to the fact that inverse images commute with arbitrary unions and intersections, the property of being an Alexandrov-discrete space is preserved under quotients.

Alexandrov-discrete spaces are named after the Russian topologist Pavel Alexandrov. They should not be confused with the more geometrical Alexandrov spaces introduced by the Russian mathematician Aleksandr Danilovich Aleksandrov.

Characterizations of Alexandrov topologies

Alexandrov topologies have numerous characterizations. Let X = <X, T> be a topological space. Then the following are equivalent:

  • Open and closed set characterizations:
    • Open set. An arbitrary intersection of open sets in X is open.
    • Closed set. An arbitrary union of closed sets in X is closed.
  • Neighbourhood characterizations:
    • Smallest neighbourhood. Every point of X has a smallest neighbourhood.
    • Neighbourhood filter. The neighbourhood filter of every point in X is closed under arbitrary intersections.
  • Interior and closure algebraic characterizations:
    • Interior operator. The interior operator of X distributes over arbitrary intersections of subsets.
    • Closure operator. The closure operator of X distributes over arbitrary unions of subsets.
  • Preorder characterizations:
    • Specialization preorder. T is the finest topology consistent with the specialization preorder of X i.e. the finest topology giving the preorder ≤ satisfying xy if and only if x is in the closure of {y} in X.
    • Open up-set. There is a preorder ≤ such that the open sets of X are precisely those that are upward closed i.e. if x is in the set and xy then y is in the set. (This preorder will be precisely the specialization preorder.)
    • Closed down-set. There is a preorder ≤ such that the closed sets of X are precisely those that are downward closed i.e. if x is in the set and yx then y is in the set. (This preorder will be precisely the specialization preorder.)
    • Downward closure. A point x lies in the closure of a subset S of X if and only if there is a point y in S such that xy where ≤ is the specialization preorder i.e. x lies in the closure of {y}.
  • Finite generation and category theoretic characterizations:
    • Finite closure. A point x lies within the closure of a subset S of X if and only if there is a finite subset F of S such that x lies in the closure of F. (This finite subset can always be chosen to be a singleton.)
    • Finite subspace. T is coherent with the finite subspaces of X.
    • Finite inclusion map. The inclusion maps fi : XiX of the finite subspaces of X form a final sink.
    • Finite generation. X is finitely generated i.e. it is in the final hull of the finite spaces. (This means that there is a final sink fi : XiX where each Xi is a finite topological space.)

Topological spaces satisfying the above equivalent characterizations are called finitely generated spaces or Alexandrov-discrete spaces and their topology T is called an Alexandrov topology.

Equivalence with preordered sets

The Alexandrov topology on a preordered set

Given a preordered set we can define an Alexandrov topology on X by choosing the open sets to be the upper sets:

We thus obtain a topological space .

The corresponding closed sets are the lower sets:

The specialization preorder on a topological space

Given a topological space X = <X, T> the specialization preorder on X is defined by:

xy if and only if x is in the closure of {y}.

We thus obtain a preordered set W(X) = <X, ≤>.

Equivalence between preorders and Alexandrov topologies

For every preordered set X = <X, ≤> we always have W(T(X)) = X, i.e. the preorder of X is recovered from the topological space T(X) as the specialization preorder. Moreover for every Alexandrov-discrete space X, we have T(W(X)) = X, i.e. the Alexandrov topology of X is recovered as the topology induced by the specialization preorder.

However for a topological space in general we do not have T(W(X)) = X. Rather T(W(X)) will be the set X with a finer topology than that of X (i.e. it will have more open sets). The topology of T(W(X)) induces the same specialization preorder as the original topology of the space X and is in fact the finest topology on X with that property.

Equivalence between monotonicity and continuity

Given a monotone function

f : XY

between two preordered sets (i.e. a function

f : XY

between the underlying sets such that x ≤ y in X implies f(x) ≤ f(y) in Y), let

T(f) : T(X)→T(Y)

be the same map as f considered as a map between the corresponding Alexandrov spaces. Then T(f) is a continuous map.

Conversely given a continuous map

gXY

between two topological spaces, let

W(g) : W(X)→W(Y)

be the same map as g considered as a map between the corresponding preordered sets. Then W(g) is a monotone function.

Thus a map between two preordered sets is monotone if and only if it is a continuous map between the corresponding Alexandrov-discrete spaces. Conversely a map between two Alexandrov-discrete spaces is continuous if and only if it is a monotone function between the corresponding preordered sets.

Notice however that in the case of topologies other than the Alexandrov topology, we can have a map between two topological spaces that is not continuous but which is nevertheless still a monotone function between the corresponding preordered sets. (To see this consider a non-Alexandrov-discrete space X and consider the identity map i : XT(W(X)).)

Category theoretic description of the equivalence

Let Set denote the category of sets and maps. Let Top denote the category of topological spaces and continuous maps; and let Pro denote the category of preordered sets and monotone functions. Then

T : ProTop and
W : TopPro

are concrete functors over Set that are left and right adjoints respectively.

Let Alx denote the full subcategory of Top consisting of the Alexandrov-discrete spaces. Then the restrictions

T : ProAlx and
W : AlxPro

are inverse concrete isomorphisms over Set.

Alx is in fact a bico-reflective subcategory of Top with bico-reflector TW : TopAlx. This means that given a topological space X, the identity map

i : T(W(X))→X

is continuous and for every continuous map

f : YX

where Y is an Alexandrov-discrete space, the composition

i −1f : YT(W(X))

is continuous.

Relationship to the construction of modal algebras from modal frames

Given a preordered set X, the interior operator and closure operator of T(X) are given by:

Int(S) = { x ∈ S : for all y ∈ X, x ≤ y implies y ∈ S }, and
Cl(S) = { x ∈ X : there exists a y ∈ S with x ≤ y }

for all S ⊆ X.

Considering the interior operator and closure operator to be modal operators on the power set Boolean algebra of X, this construction is a special case of the construction of a modal algebra from a modal frame i.e. from a set with a single binary relation. (The latter construction is itself a special case of a more general construction of a complex algebra from a relational structure i.e. a set with relations defined on it.) The class of modal algebras that we obtain in the case of a preordered set is the class of interior algebras—the algebraic abstractions of topological spaces.

Properties

Every subspace of an Alexandrov-discrete space is Alexandrov-discrete.[1]

The product of two Alexandrov-discrete spaces is Alexandrov-discrete.[2]

Every Alexandrov topology is first countable.

Every Alexandrov topology is locally compact in the sense that every point has a local base of compact neighbourhoods, since the smallest neighbourhood of a point is always compact.[3] Indeed, if is the smallest (open) neighbourhood of a point , in itself with the subspace topology any open cover of contains a neighbourhood of included in . Such a neighbourhood is necessarily equal to , so the open cover admits as a finite subcover.

Every Alexandrov topology is locally path connected.[4][5]

History

Alexandrov spaces were first introduced in 1937 by P. S. Alexandrov under the name discrete spaces, where he provided the characterizations in terms of sets and neighbourhoods.[6] The name discrete spaces later came to be used for topological spaces in which every subset is open and the original concept lay forgotten in the topological literature. On the other hand, Alexandrov spaces played a relevant role in Øystein Ore pioneering studies on closure systems and their relationships with lattice theory and topology.[7]

With the advancement of categorical topology in the 1980s, Alexandrov spaces were rediscovered when the concept of finite generation was applied to general topology and the name finitely generated spaces was adopted for them. Alexandrov spaces were also rediscovered around the same time in the context of topologies resulting from denotational semantics and domain theory in computer science.

In 1966 Michael C. McCord and A. K. Steiner each independently observed an equivalence between partially ordered sets and spaces that were precisely the T0 versions of the spaces that Alexandrov had introduced.[8][9] P. T. Johnstone referred to such topologies as Alexandrov topologies.[10] F. G. Arenas independently proposed this name for the general version of these topologies.[11] McCord also showed that these spaces are weak homotopy equivalent to the order complex of the corresponding partially ordered set. Steiner demonstrated that the equivalence is a contravariant lattice isomorphism preserving arbitrary meets and joins as well as complementation.

It was also a well-known result in the field of modal logic that a equivalence exists between finite topological spaces and preorders on finite sets (the finite modal frames for the modal logic S4). A. Grzegorczyk observed that this extended to a equivalence between what he referred to as totally distributive spaces and preorders. C. Naturman observed that these spaces were the Alexandrov-discrete spaces and extended the result to a category-theoretic equivalence between the category of Alexandrov-discrete spaces and (open) continuous maps, and the category of preorders and (bounded) monotone maps, providing the preorder characterizations as well as the interior and closure algebraic characterizations.[12]

A systematic investigation of these spaces from the point of view of general topology, which had been neglected since the original paper by Alexandrov was taken up by F. G. Arenas.[11]

See also

  • P-space, a space satisfying the weaker condition that countable intersections of open sets are open

References

  1. ^ Speer 2007, Theorem 7.
  2. ^ Arenas 1999, Theorem 2.2.
  3. ^ Speer, Timothy (16 August 2007). "A Short Study of Alexandroff Spaces". arXiv:0708.2136 [math.GN].Theorem 5
  4. ^ "Are minimal neighborhoods in an Alexandrov topology path-connected?". Mathematics Stack Exchange.
  5. ^ Arenas 1999, Theorem 2.8.
  6. ^ Alexandroff, P. (1937). "Diskrete Räume". Mat. Sb. New Series (in German). 2: 501–518.
  7. ^ O. Ore, Some studies on closure relations, Duke Math. J. 10 (1943), 761–785. See Marcel Erné, Closure, in Frédéric Mynard, Elliott Pearl (Editors), Beyond Topology, Contemporary mathematics vol. 486, American Mathematical Society, 2009, p.170ff
  8. ^ McCord, M. C. (1966). "Singular homology and homotopy groups of finite topological spaces". Duke Mathematical Journal. 33 (3): 465–474. doi:10.1215/S0012-7094-66-03352-7.
  9. ^ Steiner, A. K. (1966). "The Lattice of Topologies: Structure and Complementation". Transactions of the American Mathematical Society. 122 (2): 379–398. doi:10.2307/1994555. ISSN 0002-9947. JSTOR 1994555.
  10. ^ Johnstone, P. T. (1986). Stone spaces (1st paperback ed.). New York: Cambridge University Press. ISBN 978-0-521-33779-3.
  11. ^ a b Arenas, F. G. (1999). "Alexandroff spaces" (PDF). Acta Math. Univ. Comenianae. 68 (1): 17–25.
  12. ^ Naturman, C. A. (1991). Interior Algebras and Topology. Ph.D. thesis, University of Cape Town Department of Mathematics.

Read other articles:

AmroziLatar belakangNama lahirAli Amrozi bin NurhasyimLahir(1962-07-05)5 Juli 1962Kalitengah, LamonganMeninggal9 November 2008(2008-11-09) (umur 46)Nusakambangan, CilacapSebab meninggalDieksekusi mati dengan regu tembakHukumanHukuman matiPembunuhanJumlah korban202NegaraIndonesiaTanggal ditangkap5 November 2002 Amrozi bin Nurhasyim atau akrab disapa Amrozi (Arab: علي عمرازي بن حجي نورهاشم, romanized: ʿAlī ʿAmrāzī bin Ḥajī Nūr Hāshimcode: ar is deprecate...

 

 

Drive BySingel oleh Traindari album California 37Dirilis10 Januari 2012Direkam2011GenrePop rockDurasi3:16LabelColumbiaPencipta Pat Monahan Espen Lind Amund Bjørklund Produser Espionage Butch Walker Kronologi singel Train Save Me, San Francisco (2011) Drive By (2012) 50 Ways to Say Goodbye (2012) Drive By adalah lagu dari band pop rock asal Amerika Serikat Train dari album studio keenam mereka, California 37. Lagu ini dirilis di Amerika Serikat sebagai singel utama album pada 10 Januari 2012,...

 

 

Pour les articles homonymes, voir Debye. Peter DebyePeter Debye (1912)BiographieNaissance 24 mars 1884MaastrichtDécès 2 novembre 1966 (à 82 ans)IthacaNom dans la langue maternelle Peter DebijeNom de naissance Petrus Josephus Wilhelmus DebijeNationalité NéerlandaisFormation Université technique de Rhénanie-Westphalie à Aix-la-Chapelle (1901-1905)Université Louis-et-Maximilien de Munich (à partir de 1906)Activités Professeur, scientifique, ingénieur, cristallographe, physicien...

Alessia RovegnoRovegno pada parade LGTB+ di Lima, 2022.LahirAlessia Rovegno Cayo20 Januari 1998 (umur 26)Lima, PeruPekerjaanModelTinggi180 m (590 ft 7 in)PasanganHugo GarciaPemenang kontes kecantikanWarna rambutDark BlondeWarna mataHijauKompetisiutamaMiss Peru 2022 (Winner)Miss Universe 2022 (TBA) Alessia Rovegno Cayo (lahir 20 Januari 1998) adalah model, pemeran, dan penyanyi asal Peru. Ia merupakan pemenang Miss Peru 2022.[1] Sebagai Miss Peru, Rovegno akan mewa...

 

 

Untuk tempat lain yang bernama sama, lihat Pameungpeuk. PameungpeukDesaNegara IndonesiaProvinsiJawa BaratKabupatenGarutKecamatanPameungpeukKode Kemendagri32.05.27.2001 Luas602,192 km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Pantai Pameungpeuk pada tahun 1918 Pameungpeuk adalah desa di kecamatan Pameungpeuk, Garut, Jawa Barat, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Data Wilayah Administrasi...

 

 

Asiatic invaders of Egypt, established 15th dynasty HyksosA man described as Abisha the Hyksos(𓋾𓈎𓈉 ḥqꜣ-ḫꜣswt, Heqa-kasut for Hyksos), leading a group of Aamu.Tomb of Khnumhotep II (circa 1900 BC).[1][2]This is one of the earliest known uses of the term Hyksos.[3] Periods and dynasties of ancient Egypt All years are BC Early Pre-dynastic period First Dynasty I c. 3150–2890 Second Dynasty II 2890–2686 Old Kingdom Third Dynasty III 2686–2613 Fourth ...

City in the Central Valley of California City in California, United StatesReedley, CaliforniaCityCity of Reedley Top: Reedley City HallMiddle: Reedley Municipal AirportBottom: Campbell Mountain SealNickname: The World's Fruit Basket[1]Location in Fresno County and the state of CaliforniaReedleyShow map of CaliforniaReedleyShow map of the United StatesCoordinates: 36°35′47″N 119°27′01″W / 36.59639°N 119.45028°W / 36.59639; -119.45028CountryUnite...

 

 

Bagian dari seri PolitikPemilihan Jenis Pemilihan sela Korporat Langsung / Tidak langsung Terbuka / Tertutup Jangka tetap Umum Lokal Paruh waktu Kemajemukan Pendahuluan Berimbang Pelengseran Awal Undi Sistem dua putaran Istilah Pemilih anonim Alokasi kursi Audit Persaingan Penetapan daerah pemilihan Pemungutan suara silang Kolese elektoral Undang-undang pemilihan umum Masa tenang kampanye Pembatasan daerah pemilihan Inisiatif rakyat Psefologi Pemungutan suara rahasia Hak suara Bagian penting ...

 

 

Pour les articles homonymes, voir Granges. Guilherand-Granges L'entrée de Guilherand-Granges après la traversée du Rhône depuis Valence par le pont Frédéric-Mistral. Blason Administration Pays France Région Auvergne-Rhône-Alpes Département Ardèche Arrondissement Tournon-sur-Rhône Intercommunalité Communauté de communes Rhône-Crussol(siège) Maire Mandat Sylvie Gaucher 2020-2026 Code postal 07500 Code commune 07102 Démographie Gentilé Guilherandais-grangeois Populationmunicipa...

Terminal Cangkiran - Simpang Lima via GunungpatiArmada Bus Trans Semarang Koridor 8Informasi umumDaerah operasiKota SemarangOperator saat iniPT Mekar Flamboyan Sendang Mulyo JayaPeta rute lbsTrans Semarang Koridor 8 Legenda Terminal Cangkiran, Mijen Pertigaan Cangkiran Tambangan Kelurahan Bubakan Bubakan Kampung Sebumi Polaman Sikretek Losari Sekolo Pandean Siwogo Terminal Gunungpati Kampung Ngrembel SMP 22 Kampung Getas Kandri FK Unwahas Pongangan Desa Wisata Kandri Kuwasen Goa Kreo Kelurah...

 

 

Japanese anime television series This article consists almost entirely of a plot summary. Please help improve the article by adding more real-world context. (December 2017) (Learn how and when to remove this template message) Sortie! Machine Robo RescueCover for the First DVD Volume.出撃!マシンロボレスキュー(Shutsugeki! Mashin Robo Resukyū)GenreMechaCreated byPLEXBandai Anime television seriesDirected byMamoru KanbeWritten byHideki SonodaMusic byNaoki SatōStu...

 

 

Запрос «Пугачёва» перенаправляется сюда; см. также другие значения. Алла Пугачёва На фестивале «Славянский базар в Витебске», 2016 год Основная информация Полное имя Алла Борисовна Пугачёва Дата рождения 15 апреля 1949(1949-04-15) (75 лет) Место рождения Москва, СССР[1]...

Сибирский горный козёл Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКла�...

 

 

Dilan 1990-1991Album lagu tema karya The Panasdalam BankDirilis1 Maret 2019 (2019-03-01)GenrePop, soft rockDurasi44:52LabelIndependenProduserPidi Baiq Dilan 1990-1991 merupakan album lagu tema karya The Panasdalam Bank untuk film Dilan 1990 (2018) dan Dilan 1991 (2019). Album ini dirilis pada 1 Maret 2019 secara independen dan dijual di seluruh gerai KFC di Indonesia. Album ini menerima nominasi dalam kategori Album Terbaik-Terbaik dan Album Pop Terbaik, sedangkan lagu Berpisah mener...

 

 

Pour les articles homonymes, voir Zhongshan (homonymie). Cet article est une ébauche concernant une localité chinoise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Zhongshan 中山 Administration Pays Chine Province ou région autonome Guangdong Statut administratif Ville-préfecture Secrétaire du PCC Xue Xiaofeng Maire Chen Liangxian Code postal Ville : 528400[1] Indicatif +86 (0)0760[1] Immatriculat...

American television producer (1926–2008) Robert H. JustmanBornRobert Harris JustmanJuly 13, 1926New York CityDiedMay 28, 2008 (aged 81)Los AngelesNationalityAmericanOccupationTelevision producerSpouseJacqueline JustmanChildrenJennifer, Jonathan, and William Robert Harris Bob Justman (July 13, 1926 – May 28, 2008) was an American television producer, director, and production manager. He worked on many American TV series including Lassie, The Life of Riley, Adventures of Superman, The O...

 

 

العلا شعار نادي العلا الاسم الكامل نادي العلا الرياضي اللقب النمور العربية (بالإنجليزية: Arabian Leopards)‏ تأسس عام 1981 الملعب مدينة الأمير محمد بن عبد العزيز الرياضيةالمدينة المنورة،  السعودية البلد  السعودية الدوري دوري الدرجة الثانية السعودي الإدارة المالك الهيئة المل�...

 

 

Риддерская ТЭЦказ. Риддер ЖЭО Страна  Казахстан Местоположение Риддер, ВКО Собственник АО «Риддер ТЭЦ» Статус Действующая Ввод в эксплуатацию 1956[1] Основные характеристики Электрическая мощность, МВт 59 Тепловая мощность 247,3 Гкал/ч Характеристики оборудования Осн...

Federal Capital of India This article is about the capital of India, within the union territory of Delhi. For other uses, see New Delhi (disambiguation). Federal capital in Delhi, IndiaNew Delhi Naī DillīFederal capitalRashtrapati BhawanNew Parliament HouseBharat MandapamLIC, Connaught PlaceSkyline of Connaught PlaceRajpath (officially Kartavya Path)India GateNational War Memorial SealMotto(s): Śrama ēva jayatēLabour is victoryNew DelhiLocation in DelhiShow map of DelhiNew DelhiLoca...

 

 

American singer (born 1959) Lydia LunchLunch at Chateau H, Saint-Julia, France, 2019Background informationBirth nameLydia Anne Koch[1]Born (1959-06-02) June 2, 1959 (age 65)[1]Rochester, New York, U.S.GenresNo wavepost-punkindustrialavant-gardespoken wordOccupation(s)Singersongwriteractressself-empowerment speaker[2]Instrument(s)VocalsguitarYears active1976–presentLabelsZERubyWidowspeak ProductionsCrippled Dick Hot Wax!AtavisticBreakin BeatsWebsitelydia-lunch.ne...