Specialization (pre)order

In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest.

The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics. The specialization order is also important for identifying suitable topologies on partially ordered sets, as is done in order theory.

Definition and motivation

Consider any topological space X. The specialization preorder ≤ on X relates two points of X when one lies in the closure of the other. However, various authors disagree on which 'direction' the order should go. What is agreed[citation needed] is that if

x is contained in cl{y},

(where cl{y} denotes the closure of the singleton set {y}, i.e. the intersection of all closed sets containing {y}), we say that x is a specialization of y and that y is a generalization of x; this is commonly written y ⤳ x.

Unfortunately, the property "x is a specialization of y" is alternatively written as "xy" and as "yx" by various authors (see, respectively, [1] and [2]).

Both definitions have intuitive justifications: in the case of the former, we have

xy if and only if cl{x} ⊆ cl{y}.

However, in the case where our space X is the prime spectrum Spec R of a commutative ring R (which is the motivational situation in applications related to algebraic geometry), then under our second definition of the order, we have

yx if and only if yx as prime ideals of the ring R.

For the sake of consistency, for the remainder of this article we will take the first definition, that "x is a specialization of y" be written as xy. We then see,

xy if and only if x is contained in all closed sets that contain y.
xy if and only if y is contained in all open sets that contain x.

These restatements help to explain why one speaks of a "specialization": y is more general than x, since it is contained in more open sets. This is particularly intuitive if one views closed sets as properties that a point x may or may not have. The more closed sets contain a point, the more properties the point has, and the more special it is. The usage is consistent with the classical logical notions of genus and species; and also with the traditional use of generic points in algebraic geometry, in which closed points are the most specific, while a generic point of a space is one contained in every nonempty open subset. Specialization as an idea is applied also in valuation theory.

The intuition of upper elements being more specific is typically found in domain theory, a branch of order theory that has ample applications in computer science.

Upper and lower sets

Let X be a topological space and let ≤ be the specialization preorder on X. Every open set is an upper set with respect to ≤ and every closed set is a lower set. The converses are not generally true. In fact, a topological space is an Alexandrov-discrete space if and only if every upper set is also open (or equivalently every lower set is also closed).

Let A be a subset of X. The smallest upper set containing A is denoted ↑A and the smallest lower set containing A is denoted ↓A. In case A = {x} is a singleton one uses the notation ↑x and ↓x. For xX one has:

  • x = {yX : xy} = ∩{open sets containing x}.
  • x = {yX : yx} = ∩{closed sets containing x} = cl{x}.

The lower set ↓x is always closed; however, the upper set ↑x need not be open or closed. The closed points of a topological space X are precisely the minimal elements of X with respect to ≤.

Examples

  • In the Sierpinski space {0,1} with open sets {∅, {1}, {0,1}} the specialization order is the natural one (0 ≤ 0, 0 ≤ 1, and 1 ≤ 1).
  • If p, q are elements of Spec(R) (the spectrum of a commutative ring R) then pq if and only if qp (as prime ideals). Thus the closed points of Spec(R) are precisely the maximal ideals.

Important properties

As suggested by the name, the specialization preorder is a preorder, i.e. it is reflexive and transitive.

The equivalence relation determined by the specialization preorder is just that of topological indistinguishability. That is, x and y are topologically indistinguishable if and only if xy and yx. Therefore, the antisymmetry of ≤ is precisely the T0 separation axiom: if x and y are indistinguishable then x = y. In this case it is justified to speak of the specialization order.

On the other hand, the symmetry of the specialization preorder is equivalent to the R0 separation axiom: xy if and only if x and y are topologically indistinguishable. It follows that if the underlying topology is T1, then the specialization order is discrete, i.e. one has xy if and only if x = y. Hence, the specialization order is of little interest for T1 topologies, especially for all Hausdorff spaces.

Any continuous function between two topological spaces is monotone with respect to the specialization preorders of these spaces: implies The converse, however, is not true in general. In the language of category theory, we then have a functor from the category of topological spaces to the category of preordered sets that assigns a topological space its specialization preorder. This functor has a left adjoint, which places the Alexandrov topology on a preordered set.

There are spaces that are more specific than T0 spaces for which this order is interesting: the sober spaces. Their relationship to the specialization order is more subtle:

For any sober space X with specialization order ≤, we have

One may describe the second property by saying that open sets are inaccessible by directed suprema. A topology is order consistent with respect to a certain order ≤ if it induces ≤ as its specialization order and it has the above property of inaccessibility with respect to (existing) suprema of directed sets in ≤.

Topologies on orders

The specialization order yields a tool to obtain a preorder from every topology. It is natural to ask for the converse too: Is every preorder obtained as a specialization preorder of some topology?

Indeed, the answer to this question is positive and there are in general many topologies on a set X that induce a given order ≤ as their specialization order. The Alexandroff topology of the order ≤ plays a special role: it is the finest topology that induces ≤. The other extreme, the coarsest topology that induces ≤, is the upper topology, the least topology within which all complements of sets ↓x (for some x in X) are open.

There are also interesting topologies in between these two extremes. The finest sober topology that is order consistent in the above sense for a given order ≤ is the Scott topology. The upper topology however is still the coarsest sober order-consistent topology. In fact, its open sets are even inaccessible by any suprema. Hence any sober space with specialization order ≤ is finer than the upper topology and coarser than the Scott topology. Yet, such a space may fail to exist, that is, there exist partial orders for which there is no sober order-consistent topology. Especially, the Scott topology is not necessarily sober.

References

  1. ^ Hartshorne, Robin (1977), Algebraic geometry, New York-Heidelberg: Springer-Verlag
  2. ^ Hochster, Melvin (1969), Prime ideal structure in commutative rings (PDF), vol. 142, Trans. Amer. Math. Soc., pp. 43–60

Further reading

  • M.M. Bonsangue, Topological Duality in Semantics, volume 8 of Electronic Notes in Theoretical Computer Science, 1998. Revised version of author's Ph.D. thesis. Available online, see especially Chapter 5, that explains the motivations from the viewpoint of denotational semantics in computer science. See also the author's homepage.

Read other articles:

Pixel 3a dan Pixel 3a XL adalah telepon pintar Android dari seri produk Google Pixel. Dijadikan sebagai varian pertengahan dari Pixel 3 dan Pixel 3 XL, telepon tersebut resmi diumumkan pada 7 Mei 2019 di Google I/O,[1] tujuh bulan setelah pengumuman produk asli Pixel 3. Google tak lanjutkan Pixel 3a pada 1 Juli 2020,[2] dan mengumumkan penggantinya, Pixel 4a, pada 3 Agustus 2020. Referensi ^ Google unveils the lower-cost Pixel 3a and Pixel 3a XL. Engadget (dalam bahasa Inggris...

 

دوري ساحل العاج الممتاز 2016-17 تفاصيل الموسم دوري ساحل العاج الممتاز البلد ساحل العاج  البطل أسيك أبيدجان  الهابطون نادي شباب أبيدجان  مباريات ملعوبة 182   عدد المشاركين 14   دوري ساحل العاج الممتاز 2015-16  دوري ساحل العاج الممتاز 2017-18  تعديل مصدري - تعديل   دور�...

 

EthiopiaAlbum studio karya Iwan FalsDirilis22 Mei 1986Direkam1986GenrePop baladaLabelMusica Studio'sKronologi Iwan Fals Aku Sayang Kamu (album Iwan Fals) (1986)Aku Sayang Kamu (album Iwan Fals)1986 Ethiopia (1986) Lancar (1987)Lancar1987 Ethiopia menjadi salah satu judul album dari Iwan Fals yang keluar pada tahun 1986. Lagu titel, Ethiopia, diilhami dari bencana kelaparan di Etiopia yang melanda sebagian negara itu. Hampir seluruh lagu dalam album ini diciptakan oleh Iwan Fals sendiri, k...

Cet article est une ébauche concernant un homme politique français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Édouard Bonnet-DuverdierCharles Hugo ou Auguste Vacquerie, Bonnet-Duverdier, photographie tirée du Recueil. Portraits de Victor Hugo et de ses familiers à Jersey, entre 1852 et 1855, Paris, BnF.FonctionsDéputé françaisTroisième législature de la Troisième République françaiseRhône28 o...

 

CharliAlbum studio karya Charli XCXDirilis13 September 2019 (2019-09-13)Direkam2017–2019[1]Genre Avant-pop electropop futurepop hyperpop Durasi50:53BahasaInggris • Perancis • Korea • PortugisLabel Asylum Atlantic Produser A. G. Cook Andrew Watt Dylan Brady Finn Keane Happy Perez Lotus IV Nicolas Petitfrère Oscar Holter Patrik Berger Peter Carlsson Planet 1999 Stargate Umru Kronologi Charli XCX Pop 2(2017) Charli(2019) How I'm Feeling Now(2020) Singel dalam album Char...

 

GE F414 F414 Type Turbofan National origin United States Manufacturer General Electric First run May 20,1993 [1] Major applications Boeing F/A-18E/F Super Hornet Saab Gripen Demo/NG HAL Tejas Mk 2 Developed from General Electric F404 General Electric F414 adalah mesin jet turbofan afterburning di kelas dorong 22.000 - pound (98 kN ) diproduksi oleh GE Aviation. F414 dikembangkan dari turbofan GE F404 untuk digunakan dalam Boeing F/A-18E/F Super Hornet. Aplikasi Boeing F/A-18E/F Super...

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

Surrender at OzoraPart of the Hungarian Revolution of 1848The Croatian surrender at Ozora by György GraczaDate7 October 1848LocationOzora, Tolna County, HungaryResult Hungarian victoryBelligerents  Hungarian Revolutionary Army Austrian Empire Kingdom of CroatiaCommanders and leaders  Mór Perczel Artúr Görgei Karl RothNicolaus Philippovich von PhilippsbergStrength 29,064+? men12 cannons[1] ≈9,000 men12 cannons[1]Casualties and losses 2 dead5 wounded[1&...

 

منتخب لاتفيا لهوكي الجليد للناشئين البلد لاتفيا  رمز IIHF LAT مشاركة دولية  لاتفيا 47 – 1 اليونان  (ريغا، لاتفيا؛ 10 نوفمبر 1992) أكبر فوز  لاتفيا 47 – 1 اليونان  (ريغا، لاتفيا؛ 10 نوفمبر 1992) أكبر هزيمة  كندا 16 – 0 لاتفيا  (ساسكاتون، ساسكاتشوان، كندا؛ 26 ديسمبر 2009) بطولة...

2008 Washington Republican presidential caucuses and primary ← 2004 February 9, 2008 (2008-02-09) (caucus)February 19, 2008 (primary) 2012 → ← WIOH →   Candidate John McCain Mike Huckabee Party Republican Republican Home state Arizona Arkansas Delegate count 16 8 Popular vote 3,228/262,304 2,959/127,657 Percentage 25.9%/49.50% 23.52%/24.09%   Candidate Ron Paul Mitt Romney Party Republican Republican Home...

 

1783 treaty between the Russian Empire and the Georgian kingdom of Kartli-Kakheti Treaty of GeorgievskA photograph of the Georgian version of the Treaty of Georgievsk with Heraclius II's signature and seal, c. 1913SignedJuly 24, 1783LocationGeorgiyevsk, Russian EmpireSealed1784Effective1784Signatories Kingdom of Kartli-Kakheti  Russian Empire Full text Treaty of Georgievsk at Wikisource The Treaty of Georgievsk (Russian: Георгиевский трактат, romanized: Georgievsk...

 

Cet article fait référence au groupe ethnique magyar. Pour en savoir plus sur sa langue, consulter l'article sur le hongrois. Magyars L'arrivée des tribus magyares dans le bassin des Carpates : le Honfoglalás. Populations importantes par région Hongrie 9 397 432 États-Unis 1 530 000 Roumanie 1 227 623 Slovaquie 520 528 Canada 315 510 Serbie 200 000[1] Ukraine 170 000 Croatie 16 000 Tchéquie 15 000 Slovénie 10 000 P...

كانت حركة الاستقلال السريلانكية حركة سياسية سلمية تهدف إلى تحقيق الاستقلال والحكم الذاتي لبلد سريلانكا، سيلان البريطانية حينذاك، من الإمبراطورية البريطانية. بدأت في مطلع القرن العشرين وقادها في الغالب الطبقة المتوسطة المتعلمة. نجحت الحركة في 4 فبراير عام 1948، عندما مُنح�...

 

Neighborhood in Samphanthawong District, Bangkok Sampheng wholesale market Sampheng (Thai: สำเพ็ง, pronounced [sǎm.pʰēŋ]) is a historic neighbourhood and market in Bangkok's Chinatown, in Samphanthawong District. It was settled during the establishment of Bangkok in 1782 by Teochew Chinese, and eventually grew into the surrounding areas. The original street of Sampheng, now officially known as Soi Wanit 1 (ซอยวานิช 1), is now a small alleyway lined with...

 

Part of a series on theCulture of Serbia History Middle Ages Monarchs People Languages Serbian language Old Serbian Traditions Dress Kinship Mythology and folklore Cuisine Festivals Religion Christianity Serbian Orthodox Church Patriarch Roman Catholicism Protestantism Hinduism Islam Judaism Art Architecture Music Composers (list) Painters (category) Sculptors (category) Heraldry Literature Comics Epic poetry Writers (category) Music and performing arts Dances Theatres (category) Actors (cat...

Córdoba Córdoba nicaragüense Billete de 1000 córdobas del Banco Central de Nicaragua.Código ISO NIOSímbolo C$Ámbito Nicaragua NicaraguaFracción 100 centavosBilletes C$5, C$10, C$20, C$50, C$100, C$200, C$500 y C$1000[1]​Monedas ¢5, ¢10, ¢25 y ¢50 C$1 y C$5Emisor Banco Central de NicaraguaInflación anual 5,6% (2023)[2]​Tasa de cambio13 de febrero de 2024 1 USD = 36,82 NIO 1 EUR = 39,62 NIOCronología Peso nicaragüense Córdoba [editar datos en Wikidata]...

 

British supermarket chain This article is about the British supermarket. For other uses, see Morrison's (disambiguation) and Morrison (disambiguation). Wm Morrison Supermarkets LimitedLogo used since 2015Hilmore House in Bradford, Morrisons' head officeTrade nameMorrisonsCompany typePrivateIndustryRetailFounded1899; 125 years ago (1899)FounderWilliam MorrisonHeadquartersBradford, EnglandKey peopleRami Baitiéh (CEO)ProductsBooksClothingFloristFood and drinkHomewareMagazinesP...

 

1996 Great Britain Lions tourDate25 September 1996 – 1 November 1996ManagerPhil LoweCoach(es)Phil LarderTour captain(s)Andy FarrellTop point scorer(s)Bobbie Goulding (63)Top try scorer(s)Karle Hammond (5)SummaryP W D L Total10 04 01 05Test match05 02 00 03OpponentP W D L  Papua New Guinea1 1 0 0 Fiji1 1 0 0 New Zealand3 0 0 3Tour chronologyPrevious tour1992Next tour2019 The 1996 Great Britain Lions tour was a rugby league tour by the Great Britain team which took place from ...

  هذه المقالة عن ربيع براغ. لمعانٍ أخرى، طالع براغ (توضيح). ربيع براغ   المكان تشيكوسلوفاكيا  التاريخ 1968  تعديل مصدري - تعديل   ربيع براغ (بالتشيكية Pražské jaro وبالسلوفاكية Pražská jar) هو مرحلة من تاريخ الجمهورية الاشتراكية التشيكوسلوفاكية، حاول خلالها الحزب الشيوع�...

 

Swiss politician This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (January 2013) (Learn how and when to remove this message) Thomas Holenstein (7 February 1896 – 31 October 1962) was a Swiss politician and member of the Swiss Federal Council (1955–1959). Holenstein studied law at the University of Bern, finishing i...