Severity: Notice
Message: Undefined offset: 1
Filename: infosekolah/leftmenudasboard.php
Line Number: 33
Line Number: 34
All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive: for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle aRb} and b R c {\displaystyle bRc} then a R c . {\displaystyle aRc.} A term's definition may require additional properties that are not listed in this table.
A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if:[1]
where the notation aRb means that (a, b) ∈ R.
An example is the relation "is equal to", because if a = b is true then b = a is also true. If RT represents the converse of R, then R is symmetric if and only if R = RT.[2]
Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation.[1]
By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").
Symmetric and antisymmetric (where the only way a can be related to b and b be related to a is if a = b) are actually independent of each other, as these examples show.
Note that S(n, k) refers to Stirling numbers of the second kind.