Normal cone (functional analysis)

In mathematics, specifically in order theory and functional analysis, if is a cone at the origin in a topological vector space such that and if is the neighborhood filter at the origin, then is called normal if where and where for any subset is the -saturatation of [1]

Normal cones play an important role in the theory of ordered topological vector spaces and topological vector lattices.

Characterizations

If is a cone in a TVS then for any subset let be the -saturated hull of and for any collection of subsets of let If is a cone in a TVS then is normal if where is the neighborhood filter at the origin.[1]

If is a collection of subsets of and if is a subset of then is a fundamental subfamily of if every is contained as a subset of some element of If is a family of subsets of a TVS then a cone in is called a -cone if is a fundamental subfamily of and is a strict -cone if is a fundamental subfamily of [1] Let denote the family of all bounded subsets of

If is a cone in a TVS (over the real or complex numbers), then the following are equivalent:[1]

  1. is a normal cone.
  2. For every filter in if then
  3. There exists a neighborhood base in such that implies

and if is a vector space over the reals then we may add to this list:[1]

  1. There exists a neighborhood base at the origin consisting of convex, balanced, -saturated sets.
  2. There exists a generating family of semi-norms on such that for all and

and if is a locally convex space and if the dual cone of is denoted by then we may add to this list:[1]

  1. For any equicontinuous subset there exists an equicontiuous such that
  2. The topology of is the topology of uniform convergence on the equicontinuous subsets of

and if is an infrabarreled locally convex space and if is the family of all strongly bounded subsets of then we may add to this list:[1]

  1. The topology of is the topology of uniform convergence on strongly bounded subsets of
  2. is a -cone in
    • this means that the family is a fundamental subfamily of
  3. is a strict -cone in
    • this means that the family is a fundamental subfamily of

and if is an ordered locally convex TVS over the reals whose positive cone is then we may add to this list:

  1. there exists a Hausdorff locally compact topological space such that is isomorphic (as an ordered TVS) with a subspace of where is the space of all real-valued continuous functions on under the topology of compact convergence.[2]

If is a locally convex TVS, is a cone in with dual cone and is a saturated family of weakly bounded subsets of then[1]

  1. if is a -cone then is a normal cone for the -topology on ;
  2. if is a normal cone for a -topology on consistent with then is a strict -cone in

If is a Banach space, is a closed cone in , and is the family of all bounded subsets of then the dual cone is normal in if and only if is a strict -cone.[1]

If is a Banach space and is a cone in then the following are equivalent:[1]

  1. is a -cone in ;
  2. ;
  3. is a strict -cone in

Ordered topological vector spaces

Suppose is an ordered topological vector space. That is, is a topological vector space, and we define whenever lies in the cone . The following statements are equivalent:[3]

  1. The cone is normal;
  2. The normed space admits an equivalent monotone norm;
  3. There exists a constant such that implies ;
  4. The full hull of the closed unit ball of is norm bounded;
  5. There is a constant such that implies .

Properties

  • If is a Hausdorff TVS then every normal cone in is a proper cone.[1]
  • If is a normable space and if is a normal cone in then [1]
  • Suppose that the positive cone of an ordered locally convex TVS is weakly normal in and that is an ordered locally convex TVS with positive cone If then is dense in where is the canonical positive cone of and is the space with the topology of simple convergence.[4]
    • If is a family of bounded subsets of then there are apparently no simple conditions guaranteeing that is a -cone in even for the most common types of families of bounded subsets of (except for very special cases).[4]

Sufficient conditions

If the topology on is locally convex then the closure of a normal cone is a normal cone.[1]

Suppose that is a family of locally convex TVSs and that is a cone in If is the locally convex direct sum then the cone is a normal cone in if and only if each is normal in [1]

If is a locally convex space then the closure of a normal cone is a normal cone.[1]

If is a cone in a locally convex TVS and if is the dual cone of then if and only if is weakly normal.[1] Every normal cone in a locally convex TVS is weakly normal.[1] In a normed space, a cone is normal if and only if it is weakly normal.[1]

If and are ordered locally convex TVSs and if is a family of bounded subsets of then if the positive cone of is a -cone in and if the positive cone of is a normal cone in then the positive cone of is a normal cone for the -topology on [4]

See also

References

  1. ^ a b c d e f g h i j k l m n o p q r Schaefer & Wolff 1999, pp. 215–222.
  2. ^ Schaefer & Wolff 1999, pp. 222–225.
  3. ^ Aliprantis, Charalambos D. (2007). Cones and duality. Rabee Tourky. Providence, R.I.: American Mathematical Society. ISBN 978-0-8218-4146-4. OCLC 87808043.
  4. ^ a b c Schaefer & Wolff 1999, pp. 225–229.

Bibliography

Read other articles:

Sophie Hermans Sophie Theodora Marianne Hermans (lahir 1 Mei 1981 di Nijmegen) adalah seorang politikus Belanda. Sebagai anggota Partai Kebebasan dan Demokrasi Rakyat (VVD), dia adalah anggota Dewan Perwakilan sejak 23 Maret 2017. Referensi Drs. S.Th.M. (Sophie) Hermans, Parlement.com lbs Anggota Tweede Kamer (2023–)sejak 6 Desember 2023Partai untuk Kebebasan (PVV – 37) Wilders Aardema Agema Blaauw Boon Van der Born Bosma (Ketua) Boutkan Claassen Crijns Deen Van Dijck E. van Dijk Esser Fa...

 

Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Carl Friedrich von SiemensFoto oleh Jacob HilsdorfLahir5 September 1872Berlin, JermanMeninggal9 September 1941 (1941-09-10) (aged 69) Carl Friedrich von Siemens (5 Se...

 

العلاقات السورية اليابانية [1]   سوريا   اليابان السفارات   العنوان : السفارة السورية في اليابان: Homat-Jade, 6-19-45Akasaka, Minato-ku Post Code:107-Tokyo, Japan [2]   العنوان : السفارة اليابانية في سوريا: رقم:3537 الشركسية، شارع الجلاء، أبو رمانة، دمشق،  سوريا [3] ال...

Phalaenopsis orchid showing monopodial form of growth Vascular plants with monopodial growth habits grow upward from a single point. They add leaves to the apex each year and the stem grows longer accordingly. The word Monopodial is derived from Greek mono-, one and podial, foot, in reference to the fact that monopodial plants have a single trunk or stem.[1] Orchids with monopodial growth often produce copious aerial roots that often hang down in long drapes and have green chlorophyll...

 

Mengalihkan ke:Konferensi Internasional Partai dan Organisasi Marxis-Leninis (Buletin Internasional)Artikel ini bukan mengenai the Hoxhaist organization Konferensi Internasional Partai-partai dan Organisasi Marxis-Leninis (Unity & Struggle). Templat ini adalah bagian dari sebuah serial tentangMaoisme Konsep dasar Marxisme–Leninisme Marxisme–Leninisme–Maoisme kontradiksi antagonistik Garis massa Perang rakyat Wilayah pangkalan revolusioner Demokrasi Baru Revolusi Kebudayaan Anti-revi...

 

American judge Albertis HarrisonJustice of the Supreme Court of VirginiaIn officeOctober 23, 1968 – December 31, 1981Preceded byClaude V. SpratleySucceeded byCharles S. Russell59th Governor of VirginiaIn officeJanuary 13, 1962 – January 15, 1966LieutenantMills GodwinPreceded byJ. Lindsay AlmondSucceeded byMills Godwin28th Attorney General of VirginiaIn officeJanuary 13, 1958 – April 20, 1961GovernorJ. Lindsay AlmondPreceded byKenneth PattySucceeded byF...

English geneticist and Nobel laureate SirPaul NurseOM CH FRS FMedSci HonFREng HonFBA MAEChancellor of the University of BristolIncumbentAssumed office 2017PresidentHugh BradyPreceded byThe Baroness Hale of Richmond61st President of the Royal SocietyIn office1 December 2010 – 1 December 2015Preceded byThe Lord Rees of LudlowSucceeded byVenkatraman Ramakrishnan9th President of Rockefeller UniversityIn office2003–2011Preceded byArnold LevineSuccee...

 

Railway station in Uttar Pradesh, India This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ghazipur City railway station – news · newspapers · books · scholar · JSTOR (March 20...

 

Francis Parkman (Boston, 16 settembre 1823 – Boston, 8 novembre 1893) è stato uno storico, docente orticultore statunitense. Foto di Francis Parkman Indice 1 Biografia 2 Opere 2.1 Traduzioni in italiano 3 Note 4 Bibliografia 5 Altri progetti 6 Collegamenti esterni Biografia Nato in una famiglia benestante, puritana, era figlio di un pastore della New North Church. Si formò in scuole private, a Boston e a Medford, poi si laureò ad Harvard, nel 1844 in arte e nel 1846 in legge. Visitò zon...

Pour les articles homonymes, voir Marcel. Marcel Chanson de Heidi Brühl Sortie 1963 Durée 3:00 Langue allemand Genre Foxtrot Format Single Auteur Charly Niessen Compositeur Charly Niessen Label Philips Chansons représentant l'Allemagne au Concours Eurovision de la chanson Zwei kleine Italiener(1962) Man gewöhnt sich so schnell an das Schöne(1964)modifier Marcel est la chanson représentant l'Allemagne au Concours Eurovision de la chanson 1963. Elle est interprétée par Heidi Brüh...

 

Земская почтаУезды Алатырский Александрийский Ананьевский Ардатовский Арзамасский Аткарский Ахтырский Балашовский Бахмутский Бежецкий Белебеевский Белозерский Бердянский Бобровский Богородский Богучарский Борисоглебский Боровичский Бронницкий Бугульминский Бу�...

 

1977 studio album by Sex PistolsNever Mind the Bollocks, Here's the Sex PistolsOriginal yellow UK variant (US variant is pink)Studio album by Sex PistolsReleased28 October 1977 (1977-10-28)RecordedOctober 1976March–August 1977StudioWessex Sound, LondonGenrePunk rockLength38:44Label Virgin (UK) Warner Bros. (US) Producer Chris Thomas Bill Price Sex Pistols chronology Never Mind the Bollocks, Here's the Sex Pistols(1977) The Great Rock 'n' Roll Swindle(1979) Singles fr...

Atoll in the northern Cook Islands ManihikiNASA picture of ManihikiGeographyLocationCentral-Southern Pacific OceanCoordinates10°24′S 161°00′W / 10.400°S 161.000°W / -10.400; -161.000ArchipelagoCook IslandsTotal islands43Major islandsTauhunu, TukaoArea4 km2 (1.5 sq mi)AdministrationCook IslandsLargest settlementTauhunuDemographicsPopulation212Ethnic groupsNu-matua, Tia-ngaro-tonga Manihikiclass=notpageimage| Location of Manihiki in the Pacific Oc...

 

Ethet e së premtes mbrëma Anjeza Shahini blev tävlingens första vinnare 2003, här vid Eurovision Song Contest 2004 i Istanbul.OriginaltitelEthet e së premtes mbrëmaGenreReality-TVSkapad avAdi Krasta, Pali KukeRegissörPali KukeProgramledareAdi KrastaDomare/juryShpëtim Saraçi (2002–2008) Alfred Kaçinari (2002–2008) Zhani Çiko (2002–2008) Zerina Kuke (2002–2008)Land Albanien  KosovoSpråkalbanskaProduktionInspelningsplatsOpera- och baletteatern, Tirana, AlbanienSän...

 

  مقاطعة برايلا مقاطعة برايلا  خريطة الموقع تقسيم إداري البلد رومانيا  [1][2] العاصمة برايلا التقسيم الأعلى رومانيا  خصائص جغرافية إحداثيات 45°07′N 27°41′E / 45.11°N 27.68°E / 45.11; 27.68   [3] المساحة 4٬766 كيلومتر مربع السكان التعداد السكاني 237٬549 نسمة (إ...

广州体育学院Guangzhou Sport University校训德厚学博 文精武杰创办时间1956年学校标识码4144010585学校类型公立党委书记黄紫华院長刘永东教师人數550人学生人數8000余人校址 中国广东省广州市天河区广州大道中1268号总面积30.02万平方米網站https://www.gzsport.edu.cn/ 位置 广州体育学院(英語:Guangzhou Sport University,缩写:GZSU),是中華人民共和國广东省一所普通高等院校,隶属于广...

 

25th Chicago Film Critics AssociationDateDecember 17, 2012SiteChicago, Illinois, U.S.HighlightsBest FilmZero Dark ThirtyMost awardsZero Dark Thirty (5)Most nominationsThe Master (10) Chicago Film Critics Association The 25th Chicago Film Critics Association Awards, honoring the best in film for 2012, were announced on December 17, 2012.[1][2] Winners and nominees The winners and nominees for the 25th Chicago Film Critics Association Awards are as follows: Kathryn Bigelow, Best...

 

جيولامعلومات عامةالتقسيم الإداري القدس البلد  إسرائيل الإحداثيات 31°47′N 35°13′E / 31.78°N 35.21°E / 31.78; 35.21 تعديل - تعديل مصدري - تعديل ويكي بيانات شارع ملخي يسرائيل جيولا (بالعبرية: גאולה) هو حي في وسط القدس، يسكنه اليهود الحريديم بشكل رئيسي. يحد جيولا حي زخرون موشيه و...

Municipality in Mecklenburg-Vorpommern, GermanyDranske MunicipalitySunset at Dranske beach Coat of armsLocation of Dranske within Vorpommern-Rügen district Dranske Show map of GermanyDranske Show map of Mecklenburg-VorpommernCoordinates: 54°37′51″N 13°13′48″E / 54.63083°N 13.23000°E / 54.63083; 13.23000CountryGermanyStateMecklenburg-VorpommernDistrictVorpommern-Rügen Municipal assoc.Nord-Rügen Government • MayorMichael HeeseArea • ...

 

Ein Funktionshäftling war ein Gefangener im Konzentrationslager-System, der von SS-Bewachern als Aufseher im Arbeitseinsatz oder zu anderen Kontroll-, Ordnungs- und Verwaltungsaufgaben gegenüber Mitgefangenen eingesetzt wurde. Funktionshäftlinge wurden von der Lager-SS vornehmlich in Konzentrations- und Arbeitslagern eingesetzt. Solange sie ihre Aufgaben zur Zufriedenheit der Bewacher erledigten, blieben ihnen Übergriffe und körperliche Schwerstarbeit erspart, und sie erhielten überdies...