Share to: share facebook share twitter share wa share telegram print page

Free object

In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.

The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of category theory, although this is in yet more abstract terms.

Definition

Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function u : E1E2 between vector spaces is entirely determined by its values on a basis of the vector space E1. The following definition translates this to any category.

A concrete category is a category that is equipped with a faithful functor to Set, the category of sets. Let C be a concrete category with a faithful functor U : CSet. Let X be a set (that is, an object in Set), which will be the basis of the free object to be defined. A free object on X is a pair consisting of an object in C and an injection (called the canonical injection), that satisfies the following universal property:

For any object B in C and any map between sets , there exists a unique morphism in C such that . That is, the following diagram commutes:
x
x

If free objects exist in C, the universal property implies every map between two sets induces a unique morphism between the free objects built on them, and this defines a functor . It follows that, if free objects exist in C, the functor F, called the free functor is a left adjoint to the faithful functor U; that is, there is a bijection

Examples

The creation of free objects proceeds in two steps. For algebras that conform to the associative law, the first step is to consider the collection of all possible words formed from an alphabet. Then one imposes a set of equivalence relations upon the words, where the relations are the defining relations of the algebraic object at hand. The free object then consists of the set of equivalence classes.

Consider, for example, the construction of the free group in two generators. One starts with an alphabet consisting of the five letters . In the first step, there is not yet any assigned meaning to the "letters" or ; these will be given later, in the second step. Thus, one could equally well start with the alphabet in five letters that is . In this example, the set of all words or strings will include strings such as aebecede and abdc, and so on, of arbitrary finite length, with the letters arranged in every possible order.

In the next step, one imposes a set of equivalence relations. The equivalence relations for a group are that of multiplication by the identity, , and the multiplication of inverses: . Applying these relations to the strings above, one obtains

where it was understood that is a stand-in for , and is a stand-in for , while is the identity element. Similarly, one has

Denoting the equivalence relation or congruence by , the free object is then the collection of equivalence classes of words. Thus, in this example, the free group in two generators is the quotient

This is often written as where is the set of all words, and is the equivalence class of the identity, after the relations defining a group are imposed.

A simpler example are the free monoids. The free monoid on a set X, is the monoid of all finite strings using X as alphabet, with operation concatenation of strings. The identity is the empty string. In essence, the free monoid is simply the set of all words, with no equivalence relations imposed. This example is developed further in the article on the Kleene star.

General case

In the general case, the algebraic relations need not be associative, in which case the starting point is not the set of all words, but rather, strings punctuated with parentheses, which are used to indicate the non-associative groupings of letters. Such a string may equivalently be represented by a binary tree or a free magma; the leaves of the tree are the letters from the alphabet.

The algebraic relations may then be general arities or finitary relations on the leaves of the tree. Rather than starting with the collection of all possible parenthesized strings, it can be more convenient to start with the Herbrand universe. Properly describing or enumerating the contents of a free object can be easy or difficult, depending on the particular algebraic object in question. For example, the free group in two generators is easily described. By contrast, little or nothing is known about the structure of free Heyting algebras in more than one generator.[1] The problem of determining if two different strings belong to the same equivalence class is known as the word problem.

As the examples suggest, free objects look like constructions from syntax; one may reverse that to some extent by saying that major uses of syntax can be explained and characterised as free objects, in a way that makes apparently heavy 'punctuation' explicable (and more memorable).[clarification needed]

Free universal algebras

Let be any set, and let be an algebraic structure of type generated by . Let the underlying set of this algebraic structure , sometimes called its universe, be , and let be a function. We say that (or informally just ) is a free algebra (of type ) on the set of free generators if, for every algebra of type and every function , where is a universe of , there exists a unique homomorphism such that

Free functor

The most general setting for a free object is in category theory, where one defines a functor, the free functor, that is the left adjoint to the forgetful functor.

Consider a category C of algebraic structures; the objects can be thought of as sets plus operations, obeying some laws. This category has a functor, , the forgetful functor, which maps objects and functions in C to Set, the category of sets. The forgetful functor is very simple: it just ignores all of the operations.

The free functor F, when it exists, is the left adjoint to U. That is, takes sets X in Set to their corresponding free objects F(X) in the category C. The set X can be thought of as the set of "generators" of the free object F(X).

For the free functor to be a left adjoint, one must also have a Set-morphism . More explicitly, F is, up to isomorphisms in C, characterized by the following universal property:

Whenever B is an algebra in C, and is a function (a morphism in the category of sets), then there is a unique C-morphism such that .

Concretely, this sends a set into the free object on that set; it is the "inclusion of a basis". Abusing notation, (this abuses notation because X is a set, while F(X) is an algebra; correctly, it is ).

The natural transformation is called the unit; together with the counit , one may construct a T-algebra, and so a monad.

The cofree functor is the right adjoint to the forgetful functor.

Existence

There are general existence theorems that apply; the most basic of them guarantees that

Whenever C is a variety, then for every set X there is a free object F(X) in C.

Here, a variety is a synonym for a finitary algebraic category, thus implying that the set of relations are finitary, and algebraic because it is monadic over Set.

General case

Other types of forgetfulness also give rise to objects quite like free objects, in that they are left adjoint to a forgetful functor, not necessarily to sets.

For example, the tensor algebra construction on a vector space is the left adjoint to the functor on associative algebras that ignores the algebra structure. It is therefore often also called a free algebra. Likewise the symmetric algebra and exterior algebra are free symmetric and anti-symmetric algebras on a vector space.

List of free objects

Specific kinds of free objects include:

See also

Notes

  1. ^ Peter T. Johnstone, Stone Spaces, (1982) Cambridge University Press, ISBN 0-521-23893-5. (A treatment of the one-generator free Heyting algebra is given in chapter 1, section 4.11)

Read other articles:

Deka WankoTitolo originaleデカワンコ PaeseGiappone Anno2011 Formatoserie TV Generecommedia, poliziesco Stagioni1 Episodi10 + 2 SP Durata50min Lingua originalegiapponese CreditiRegiaNakajima Satoru (中島悟), Kunimoto Masahiro, Kubota Mitsuru (久保田充) SoggettoMorimoto Kozueko (森本梢子) SceneggiaturaBan Kazuhiko Interpreti e personaggi Mikako Tabe: Ichiko Hanamori (Wanko) Ikki Sawamura: Kan'ichi Shigemura (Shige) Yūya Tegoshi: Ryūta Kirishima (Kiri) Mitsuru Fukikoshi: Yūki…

Species of bird Olive-backed quail-dove Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Columbiformes Family: Columbidae Genus: LeptotrygonBanks et al., 2013 Species: L. veraguensis Binomial name Leptotrygon veraguensis(Lawrence, 1866) Synonyms Geotrygon veraguensis The olive-backed quail-dove (Leptotrygon veraguensis) is a species of bird in the family Columbidae. It is found in C…

Agamidae Agama mwanzae (en) TaksonomiKerajaanAnimaliaFilumChordataKelasReptiliaOrdoSquamataUpaordoIguaniaFamiliAgamidae Spix Anak suku6, lihat tekslbs Agamidae adalah suku kadal yang terdiri lebih dari 300 spesies yang tersebar luas di Afrika, Asia, Australia, dan sebagian Eropa selatan. Banyak spesies dari suku ini yang diberi nama naga (walaupun istilah naga dalam literatur lebih banyak merujuk ke ular) atau kadal naga.[1] Pengenalan Familia ini memiliki beberapa kemiripan dengan famil…

Moapa Valley National Wildlife RefugeIUCN category IV (habitat/species management area)View of the Moapa Valley Wildlife Refuge, looking northMap of the United StatesLocationClark County, Nevada, United StatesNearest cityGlendale, NevadaCoordinates36°42′30″N 114°42′48″W / 36.70833°N 114.71333°W / 36.70833; -114.71333Area106 acres (43 ha)Established1979Governing bodyU.S. Fish and Wildlife ServiceWebsiteMoapa Valley National Wildlife Refuge The Mo…

Range Rover Evoque Datos generalesFabricante Land RoverFábricas Halewood, InglaterraPeríodo 2011-presenteConfiguraciónTipo Automóvil todoterrenoSegmento Segmento CConfiguración Motor delantero transversal, tracción delantera o a las cuatro ruedasDimensionesDimensiones 4355 / 1965 / 1605 / 2660 mm[editar datos en Wikidata] El Range Rover Evoque es un automóvil todoterreno de lujo del segmento C que el fabricante británico Land Rover lanzó al mercado en julio del año 2011.…

及川雅貴阪神虎 – 背号37投手出生: (2001-04-18) 2001年4月18日(22歲) 日本千葉縣匝瑳市 打擊:左 投球:左 首秀2021年5月28日,代表阪神虎生涯成績 (2023年球季止)勝投-敗投5-4中繼-救援17-0三振-四壞78-38防禦率3.07 球队 橫濱高等學校 阪神虎(2021年-) 及川雅貴(日语:及川 雅貴/およかわ まさき Oyokawa Masaki,2001年4月18日—)是日本千葉縣匝瑳市出身的職業棒

NapoProvinceProvince of Napo BenderaLocation of Napo Province in Ecuador.Cantons of Napo ProvinceCountryEcuadorEstablishedOctober 22, 1959.CapitalTena, EcuadorCantonsList of CantonsLuas • Total12.484 km2 (4,820 sq mi)Populasi • Total79.139 • Urban25.759Zona waktuUTC-5 (ECT) The Andes in Ecuador, with the volcanoes Antisana (left) and Cotopaxi (right), as seen from the Pichincha mountain. Provinsi Napo merupakan sebah provinsi di Ekuador yang mem…

Село Трусколяси-Ольшинапол. Truskolasy-Olszyna Координати 53°01′27″ пн. ш. 22°42′09″ сх. д. / 53.024400000028° пн. ш. 22.70250000002777924° сх. д. / 53.024400000028; 22.70250000002777924Координати: 53°01′27″ пн. ш. 22°42′09″ сх. д. / 53.024400000028° пн. ш. 22.70250000002777924° сх. д.&#…

Saigo Tsugumichi Saigo Tsugumichi Bijnaam Shingō Geboren 1 juni 1843Kagoshima, Satsuma, Japan Overleden 28 juli 1902Tokio, Japan Rustplaats Tama Reien Begraafplaats, Fuchū, Tokio, Japan[1] Land/zijde  Japans Keizerrijk Onderdeel Japanse Keizerlijke Leger Japanse Keizerlijke Marine Dienstjaren 1869 - 1902 Rang Luitenant-generaal(中将 Chūjō) Admiraal(元帥海軍大将Gensui kaigun-taishō) Slagen/oorlogen *Boshin-oorlog*Slag om Toba–Fushimi*Japanse strafexpeditie naar Ta…

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 15 de diciembre de 2017. Grupos de Respuesta Especial para el Crimen Organizado Emblema de los Grupos de Respuesta Especial para el Crimen Organizado (GRECO)País  EspañaFidelidad  EspañaRama/s Policía NacionalFunción Lucha contra las mafias, el crimen organizado y el tráfico de drogasEspecialización Policía Judicial[editar datos en Wikidata] Los Grupos …

село Черна Герб Прапор Країна  Україна Область Закарпатська область Район Берегівський район Громада Королівська громада Код КАТОТТГ UA21020150090048254 Основні дані Засноване 1300 Населення 2226 Площа 5295 км² Густота населення 0,42 осіб/км² Поштовий індекс 90340 Телефонний код +38…

Голіцин Анатолій Михайловичрос. Анатолий Михайлович ГолицынНародився 25 серпня 1926(1926-08-25)Пирятин, Прилуцька округа, Українська СРР, СРСРПомер 29 грудня 2008(2008-12-29) (82 роки)Країна  СРСР СШАДіяльність агент, письменник, дипломатЗнання мов російська і англійськаЧле…

Primate of the Church of the East from 399 to 410 Isaac or Mar Isaac was the persian bishop of Seleucia-Ctesiphon, grand metropolitan and primate of the Church of the East from 399 to 410. He is included in the traditional list of patriarchs of the Church of the East. He has also been canonized as a saint by various Apostolic churches. Mar IsaacIsaac portrayed in the Tabula PeutingerianaGrand Metropolitan and Primate of PersiaConcilium Seleuciae Et Ctesiphonti Habitum anno 410 (in Latin). 1868.&…

HidrokelGambar suara ultra pada zakar dengan hidrokel sebesar 1 dm, dengan carian hitam yang mengelilingi testikelInformasi umumNama lainHidrokoelSpesialisasiUrologi Hidrokel adalah akumulasi cairan serosa pada rongga tubuh. Hidrokel testis adalah akumulasi cairan di sekitar testis. Akumulasi ini sering disebabkan oleh cairan yang dikeluarkan dari sisa peritoneum yang melilit testis, yang disebut tunica vaginalis. Asalkan tidak ada hernia, hidrokel di bawah usia 1 tahun biasanya dapat sembuh den…

Erzbistum Besançon Karte Erzbistum Besançon Basisdaten Staat Frankreich Diözesanbischof Jean-Luc Bouilleret Generalvikar Jean-Claude Menoud Fläche 9732 km² Pfarreien 67 (2018 / AP 2019) Einwohner 614.375 (2018 / AP 2019) Katholiken 567.000 (2018 / AP 2019) Anteil 92,3 % Diözesanpriester 155 (2018 / AP 2019) Ordenspriester 13 (2018 / AP 2019) Katholiken je Priester 3375 Ständige Diakone 30 (2018 / AP 2019) Ordensbrüder 40 (2018 / AP 2019) Ordensschwestern 334 (2018 / AP 2019) Ritus R…

American painter W. Elmer SchofieldSchofield in his studio at St. Ives,Cornwall, 1907Born(1866-09-10)September 10, 1866[1]: 121 Philadelphia, Pennsylvania, U.S.DiedMarch 1, 1944(1944-03-01) (aged 77)Breage, Cornwall, EnglandNationalityAmericanEducationPennsylvania Academy of the Fine ArtsAcadémie JulianKnown forLandscape artMaritime artMovementPennsylvania Impressionism Walter Elmer Schofield ROI RBA (September 10, 1866[a] – March 1, 1944) was an …

Wybory prezydenckie na Ukrainie w 1991 roku – pierwsze wybory Prezydenta Ukrainy po odzyskaniu niepodległości przez Ukrainę odbyły się 1 grudnia 1991, wraz z ogólnoukraińskim referendum na temat ogłoszenia niepodległości Ukrainy. Prezydentem został Łeonid Krawczuk  który zwyciężył w pierwszej turze wyborów w większości obwodów Ukrainy, z wyjątkiem trzech obwodów Galicji, gdzie zwyciężył Wjaczesław Czornowił. Wyniki wyborów Kandydat Liczba głosów % Łeonid Kra…

v · mListe des aéroports les plus fréquentés en Amérique du Sud État souverain Argentine Bolivie Brésil Chili Colombie Équateur Guyana Panama Paraguay Pérou Suriname Trinité-et-Tobago Uruguay Venezuela Dépendances et territoires à souveraineté spéciale Aruba (Pays-Bas) Bonaire (Pays-Bas) Curaçao (Pays-Bas) Géorgie du Sud-et-les îles Sandwich du Sud (Royaume-Uni) Guyane (France) Îles Malouines (Royaume-Uni)  Documentation de palette[purger] Ceci est la document…

German painter This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (December 2020) (Learn how and when to remove this template message) Self-portrait (1775) Georg Melchior Kraus (26 July 1737, in Frankfurt am Main – 5 November 1806, in Weimar) was a German painter. He was a co-founder of the Weimar Princely Free Drawing Sch…

Federico Franco Federico Franco Gómez (lahir 24 Juli 1962) adalah politikus Paraguay dari Authentic Radical Liberal Party (PLRA). Ia terpilih sebagai Wakil Presiden Paraguay menyusul kemenangan Fernando Lugo dalam pemilihan presiden dan menjabat pada Agustus 2008. Ia memimpin PLRA. Ia juga saudara Julio César Franco, senator dan mantan ketua Authentic Radical Liberal Party, dan mantan Wakil Presiden Paraguay. Didahului oleh:Francisco Oviedo Wakil Presiden Paraguay2008—sekarang Diteruskan…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 18.116.12.145