Forgetful functor

In mathematics, in the area of category theory, a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure. Because many structures in mathematics consist of a set with an additional added structure, a forgetful functor that maps to the underlying set is the most common case.

Overview

As an example, there are several forgetful functors from the category of commutative rings. A (unital) ring, described in the language of universal algebra, is an ordered tuple satisfying certain axioms, where and are binary functions on the set , is a unary operation corresponding to additive inverse, and 0 and 1 are nullary operations giving the identities of the two binary operations. Deleting the 1 gives a forgetful functor to the category of rings without unit; it simply "forgets" the unit. Deleting and 1 yields a functor to the category of abelian groups, which assigns to each ring the underlying additive abelian group of . To each morphism of rings is assigned the same function considered merely as a morphism of addition between the underlying groups. Deleting all the operations gives the functor to the underlying set .

It is beneficial to distinguish between forgetful functors that "forget structure" versus those that "forget properties". For example, in the above example of commutative rings, in addition to those functors that delete some of the operations, there are functors that forget some of the axioms. There is a functor from the category CRing to Ring that forgets the axiom of commutativity, but keeps all the operations. Occasionally the object may include extra sets not defined strictly in terms of the underlying set (in this case, which part to consider the underlying set is a matter of taste, though this is rarely ambiguous in practice). For these objects, there are forgetful functors that forget the extra sets that are more general.

Most common objects studied in mathematics are constructed as underlying sets along with extra sets of structure on those sets (operations on the underlying set, privileged subsets of the underlying set, etc.) which may satisfy some axioms. For these objects, a commonly considered forgetful functor is as follows. Let be any category based on sets, e.g. groups—sets of elements—or topological spaces—sets of 'points'. As usual, write for the objects of and write for the morphisms of the same. Consider the rule:

For all in the underlying set of
For all in the morphism, , as a map of sets.

The functor is then the forgetful functor from to Set, the category of sets.

Forgetful functors are almost always faithful. Concrete categories have forgetful functors to the category of sets—indeed they may be defined as those categories that admit a faithful functor to that category.

Forgetful functors that only forget axioms are always fully faithful, since every morphism that respects the structure between objects that satisfy the axioms automatically also respects the axioms. Forgetful functors that forget structures need not be full; some morphisms don't respect the structure. These functors are still faithful however because distinct morphisms that do respect the structure are still distinct when the structure is forgotten. Functors that forget the extra sets need not be faithful, since distinct morphisms respecting the structure of those extra sets may be indistinguishable on the underlying set.

In the language of formal logic, a functor of the first kind removes axioms, a functor of the second kind removes predicates, and a functor of the third kind remove types[clarification needed]. An example of the first kind is the forgetful functor AbGrp. One of the second kind is the forgetful functor AbSet. A functor of the third kind is the functor ModAb, where Mod is the fibred category of all modules over arbitrary rings. To see this, just choose a ring homomorphism between the underlying rings that does not change the ring action. Under the forgetful functor, this morphism yields the identity. Note that an object in Mod is a tuple, which includes a ring and an abelian group, so which to forget is a matter of taste.

Left adjoints of forgetful functors

Forgetful functors tend to have left adjoints, which are 'free' constructions. For example:

  • free module: the forgetful functor from (the category of -modules) to has left adjoint , with , the free -module with basis .
  • free group
  • free lattice
  • tensor algebra
  • free category, adjoint to the forgetful functor from categories to quivers
  • universal enveloping algebra

For a more extensive list, see (Mac Lane 1997).

As this is a fundamental example of adjoints, we spell it out: adjointness means that given a set X and an object (say, an R-module) M, maps of sets correspond to maps of modules : every map of sets yields a map of modules, and every map of modules comes from a map of sets.

In the case of vector spaces, this is summarized as: "A map between vector spaces is determined by where it sends a basis, and a basis can be mapped to anything."

Symbolically:

The unit of the free–forgetful adjunction is the "inclusion of a basis": .

Fld, the category of fields, furnishes an example of a forgetful functor with no adjoint. There is no field satisfying a free universal property for a given set.

See also

References

  • Mac Lane, Saunders. Categories for the Working Mathematician, Graduate Texts in Mathematics 5, Springer-Verlag, Berlin, Heidelberg, New York, 1997. ISBN 0-387-98403-8

Read other articles:

Temperance Billiard Hall, Chelsea Wikimedia Commons has media related to Temperance Billiard Hall, Chelsea. The Temperance Billiard Hall at 131–141 King's Road, Chelsea, London, is a Grade II listed building with English Heritage.[1] It was built around 1912–14 to a design by Thomas Retford Somerford for Temperance Billiards Halls Ltd., and became an antiques centre in the 1960s. It is still retail premises.[2] It is now connected to the former Chelsea Garage in 15 Flood ...

 

 

نادي اتحاد مانشستر تأسس عام 2005  الملعب غيغ لين  البلد المملكة المتحدة  الدوري دوري الشمال الممتاز  [لغات أخرى]‏  الموقع الرسمي الموقع الرسمي  الطقم الرسمي الطقم الأساسي الطقم الاحتياطي الطقم الثالث تعديل مصدري - تعديل   نادي اتحاد مانشستر لكرة القدم (...

 

 

Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Mehmed V – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Mehmed VKhalifahAmir ul-Mu'mininSultan U...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Aiko 16-Sai (アイコ十六歳code: ja is deprecated ) adalah sebuah novel Jepang karya Akemi Hotta. Novel ini telah diadaptasikan ke serial televisi pada tahun 1982 dan film pada tahun 1983. Film アイコ十六歳Aiko 16-SaiSutradaraAkiyoshi Imazek...

 

 

Public school in Astoria, New York, United StatesWilliam Cullen Bryant High SchoolAddress48-10 31st AvenueAstoria, New York 11103United StatesCoordinates40°45′28″N 73°54′38″W / 40.75778°N 73.91056°W / 40.75778; -73.91056InformationTypePublicEstablished1889School districtNYC Geographic District 30PrincipalCarlyn St. AubainGrades9–12Enrollment2,141Websitewww.wcbryanths.org William Cullen Bryant High School, or William C. Bryant High School, and W.C. Bryant...

 

 

La neutralità di questa voce o sezione sugli argomenti antica Roma e opere letterarie è stata messa in dubbio. Motivo: giudizi critici non referenziati Per contribuire, correggi i toni enfatici o di parte e partecipa alla discussione. Non rimuovere questo avviso finché la disputa non è risolta. Segui i suggerimenti dei progetti di riferimento 1, 2. Ab Urbe condita libri(Storia di Roma)Titolo originaleAb Urbe condita libri CXLII Altri titoliStoria di Roma dalla sua fondazioneHis...

Irish League 1997-1998 Competizione Irish League Sport Calcio Edizione 97ª Organizzatore IFA Luogo  Irlanda del Nord Partecipanti 10 Cronologia della competizione 1996-97 1998-99 Manuale Il campionato era formato da dieci squadre e il Cliftonville vinse il titolo. Classifica finale Pos. Squadra G V N P GF GS Punti 1 Cliftonville 36 20 8 8 49 37 68 2 Linfield 36 17 13 6 50 19 64 3 Portadown 36 17 9 10 50 38 60 4 Glentoran 36 17 8 11 52 34 59 5 Ballymena United 36 14 9 13 55 55 51 6 Crus...

 

 

Kongres Amerika Serikat ke-56Gedung Kapitol (1906)Periode4 Maret 1899 – 4 Maret 1901Anggota90 senator357 anggota dewan4 delegasi tanpa suaraMayoritas SenatPartai RepublikPresiden SenatGarret Hobart (R) (sampai 21 November 1899)Lowong (dari 21 November 1899)Mayoritas DPRPartai RepublikKetua DPRDavid B. Henderson (R)Pres. Senat Pro TemporeWilliam P. Frye (R)Sesike-1: 4 Desember 1899 – 7 Juni 1900ke-2: 3 Desember 1900 – 3 Maret 1901ke-55 ←→ ke-57 Kongres Amerika Serikat ...

 

 

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

 

1950–1994 social movement in South Africa Internal resistance to apartheidPart of the decolonisation of AfricaNelson Mandela burns his passbook in 1960 as part of a civil disobedience campaign.Date4 June 1948 – 10 May 1994(45 years, 11 months and 6 days)[note 1]LocationSouth AfricaResult Military stalemate between MK and South African security forces[2][3] Bilateral negotiations to end apartheid[4] Abolition of apartheid in 1991 Dissolution o...

 

 

Discipline concerning the application of advanced analytical methods For the academic journal, see Operations Research (journal). The examples and perspective in this article may not represent a worldwide view of the subject. The specific issue is: US perspective completely neglected, George Dantzig gets a passing mention only You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (December 2020) (Learn how and when to remove this message) O...

Italian vehicle and aero-engine manufacturer For other uses of Ceirano, see Ceirano (disambiguation). S.P.A.Società Piemontese AutomobiliIndustryAutomotiveFounded1906Defunct1926; 98 years ago (1926)FateTaken over by FiatHeadquartersTurin, ItalyKey peopleMichele Ansaldi, Matteo Ceirano foundersProductsAutomobiles, military vehicles S.P.A. (Società Piemontese Automobili) was an Italian automobile, military vehicle and aero-engine manufacturer founded in Turin by Matteo Ceira...

 

 

هاينكل هي 77معلومات عامةالنوع قاذفة قنابلبلد الأصل ألمانياالمهام قاذفة قنابل استراتيجية التطوير والتصنيعالصانع هاينكلالكمية المصنوعة 1169سيرة الطائرةدخول الخدمة 1942انتهاء الخدمة 1945أول طيران 1939الوضع الحالي منتهية الخدمةالخدمةالمستخدم الأساسي سلاح الجو الألمانيالخصائصا...

 

 

2022 single by OneRepublicI Ain't WorriedSingle by OneRepublicfrom the album Top Gun: Maverick (Music from the Motion Picture) and Artificial Paradise Written2020ReleasedMay 13, 2022 (2022-05-13)RecordedNovember 2021Studio Kempinski (Budapest, Hungary) Length2:28Label Mosley Interscope Songwriter(s) Ryan Tedder Brent Kutzle Tyler Spry John Eriksson Peter Morén Björn Yttling Producer(s) Tedder Kutzle Simon Oscroft Spry John Nathaniel OneRepublic singles chronology You Were Lo...

U.S. House district for Utah Utah's 1st congressional districtInteractive map of district boundaries since January 3, 2023RepresentativeBlake MooreR–Salt Lake CityPopulation (2022)850,432Median householdincome$86,951[1]Ethnicity78.7% White13.2% Hispanic3.6% Two or more races2.1% Asian1.3% other1.1% BlackCook PVIR+12[2] Utah's 1st congressional district serves the northern area of Utah, including the cities of Ogden, Logan, Park City, Layton, Clearfield, Salt Lake City, and t...

 

 

Tibetan Buddhist sculptures used in rituals and offerings For other uses, see Torma (disambiguation). Torma or butter sculptures, Dhankar Gompa, Spiti Torma, Ralung Monastery, Tibet, 1993 Torma cakes offered on the sand mandala Tormas on a shrine Making tormas Monk making tormas in Sera Monastery in 1939 Torma (Skt: Balingta, Tib: Tor-ma, Wylie: gtor ma) are sculptures made mostly of flour and butter used in tantric rituals or as offerings in Tibetan Buddhism. They may be dyed in different co...

 

 

Questa voce o sezione sull'argomento politici italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Giovan Carlo Iozzelli Deputato della Repubblica ItalianaLegislaturaVII GruppoparlamentareDemocrazia Cristiana CircoscrizioneFirenze-Pistoia Incarichi parlamentari Componente della VI Commissione (Fi...

Emily DeschanelDeschanel dalam Farm Sanctuary Gala, 2006LahirEmily Erin DeschanelPekerjaanAktris, produser acara TVTahun aktif1994–kiniSuami/istriDavid Hornsby (2010–kini) Emily Erin Deschanel (pengucapan bahasa Inggris: [deɪʃəˈnɛl]; lahir 11 Oktober 1976) adalah seorang pemeran sekaligus produser acara televisi asal Amerika Serikat yang dikenal sebagai pemeran Dr. Temperance Bones Brennan dalam serial komedi-drama-kriminal, Bones.[2] Deschanel merupakan putri dari...

 

 

Work by Marquis de Condorcet Sketch for a Historical Picture of the Progress of the Human Mind Title page of an early French editionAuthorMarquis de CondorcetOriginal titleEsquisse d'un tableau historique des progrès de l'esprit humainLanguageFrenchPublication date1795Publication placeFranceMedia typePrint Sketch for a Historical Picture of the Progress of the Human Mind (French: Esquisse d'un tableau historique des progrès de l'esprit humain) is a work by the French philosopher a...