Representable functor

In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i.e. sets and functions) allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.

From another point of view, representable functors for a category C are the functors given with C. Their theory is a vast generalisation of upper sets in posets, and Yoneda's representability theorem generalizes Cayley's theorem in group theory.

Definition

Let C be a locally small category and let Set be the category of sets. For each object A of C let Hom(A,–) be the hom functor that maps object X to the set Hom(A,X).

A functor F : CSet is said to be representable if it is naturally isomorphic to Hom(A,–) for some object A of C. A representation of F is a pair (A, Φ) where

Φ : Hom(A,–) → F

is a natural isomorphism.

A contravariant functor G from C to Set is the same thing as a functor G : CopSet and is commonly called a presheaf. A presheaf is representable when it is naturally isomorphic to the contravariant hom-functor Hom(–,A) for some object A of C.

Universal elements

According to Yoneda's lemma, natural transformations from Hom(A,–) to F are in one-to-one correspondence with the elements of F(A). Given a natural transformation Φ : Hom(A,–) → F the corresponding element uF(A) is given by

Conversely, given any element uF(A) we may define a natural transformation Φ : Hom(A,–) → F via

where f is an element of Hom(A,X). In order to get a representation of F we want to know when the natural transformation induced by u is an isomorphism. This leads to the following definition:

A universal element of a functor F : CSet is a pair (A,u) consisting of an object A of C and an element uF(A) such that for every pair (X,v) consisting of an object X of C and an element vF(X) there exists a unique morphism f : AX such that (Ff)(u) = v.

A universal element may be viewed as a universal morphism from the one-point set {•} to the functor F or as an initial object in the category of elements of F.

The natural transformation induced by an element uF(A) is an isomorphism if and only if (A,u) is a universal element of F. We therefore conclude that representations of F are in one-to-one correspondence with universal elements of F. For this reason, it is common to refer to universal elements (A,u) as representations.

Examples

  • The functor represented by a scheme A can sometimes describe families of geometric objects. For example, vector bundles of rank k over a given algebraic variety or scheme X correspond to algebraic morphisms where A is the Grassmannian of k-planes in a high-dimensional space. Also certain types of subschemes are represented by Hilbert schemes.
  • Let C be the category of CW-complexes with morphisms given by homotopy classes of continuous functions. For each natural number n there is a contravariant functor Hn : CAb which assigns each CW-complex its nth cohomology group (with integer coefficients). Composing this with the forgetful functor we have a contravariant functor from C to Set. Brown's representability theorem in algebraic topology says that this functor is represented by a CW-complex K(Z,n) called an Eilenberg–MacLane space.
  • Consider the contravariant functor P : SetSet which maps each set to its power set and each function to its inverse image map. To represent this functor we need a pair (A,u) where A is a set and u is a subset of A, i.e. an element of P(A), such that for all sets X, the hom-set Hom(X,A) is isomorphic to P(X) via ΦX(f) = (Pf)u = f−1(u). Take A = {0,1} and u = {1}. Given a subset SX the corresponding function from X to A is the characteristic function of S.
  • Forgetful functors to Set are very often representable. In particular, a forgetful functor is represented by (A, u) whenever A is a free object over a singleton set with generator u.
  • A group G can be considered a category (even a groupoid) with one object which we denote by •. A functor from G to Set then corresponds to a G-set. The unique hom-functor Hom(•,–) from G to Set corresponds to the canonical G-set G with the action of left multiplication. Standard arguments from group theory show that a functor from G to Set is representable if and only if the corresponding G-set is simply transitive (i.e. a G-torsor or heap). Choosing a representation amounts to choosing an identity for the heap.
  • Let R be a commutative ring with identity, and let R-Mod be the category of R-modules. If M and N are unitary modules over R, there is a covariant functor B: R-ModSet which assigns to each R-module P the set of R-bilinear maps M × NP and to each R-module homomorphism f : PQ the function B(f) : B(P) → B(Q) which sends each bilinear map g : M × NP to the bilinear map fg : M × NQ. The functor B is represented by the R-module MR N.[1]

Analogy: Representable functionals

Consider a linear functional on a complex Hilbert space H, i.e. a linear function . The Riesz representation theorem states that if F is continuous, then there exists a unique element which represents F in the sense that F is equal to the inner product functional , that is for .

For example, the continuous linear functionals on the square-integrable function space are all representable in the form for a unique function . The theory of distributions considers more general continuous functionals on the space of test functions . Such a distribution functional is not necessarily representable by a function, but it may be considered intuitively as a generalized function. For instance, the Dirac delta function is the distribution defined by for each test function , and may be thought of as "represented" by an infinitely tall and thin bump function near .

Thus, a function may be determined not by its values, but by its effect on other functions via the inner product. Analogously, an object A in a category may be characterized not by its internal features, but by its functor of points, i.e. its relation to other objects via morphisms. Just as non-representable functionals are described by distributions, non-representable functors may be described by more complicated structures such as stacks.

Properties

Uniqueness

Representations of functors are unique up to a unique isomorphism. That is, if (A11) and (A22) represent the same functor, then there exists a unique isomorphism φ : A1A2 such that

as natural isomorphisms from Hom(A2,–) to Hom(A1,–). This fact follows easily from Yoneda's lemma.

Stated in terms of universal elements: if (A1,u1) and (A2,u2) represent the same functor, then there exists a unique isomorphism φ : A1A2 such that

Preservation of limits

Representable functors are naturally isomorphic to Hom functors and therefore share their properties. In particular, (covariant) representable functors preserve all limits. It follows that any functor which fails to preserve some limit is not representable.

Contravariant representable functors take colimits to limits.

Left adjoint

Any functor K : CSet with a left adjoint F : SetC is represented by (FX, ηX(•)) where X = {•} is a singleton set and η is the unit of the adjunction.

Conversely, if K is represented by a pair (A, u) and all small copowers of A exist in C then K has a left adjoint F which sends each set I to the Ith copower of A.

Therefore, if C is a category with all small copowers, a functor K : CSet is representable if and only if it has a left adjoint.

Relation to universal morphisms and adjoints

The categorical notions of universal morphisms and adjoint functors can both be expressed using representable functors.

Let G : DC be a functor and let X be an object of C. Then (A,φ) is a universal morphism from X to G if and only if (A,φ) is a representation of the functor HomC(X,G–) from D to Set. It follows that G has a left-adjoint F if and only if HomC(X,G–) is representable for all X in C. The natural isomorphism ΦX : HomD(FX,–) → HomC(X,G–) yields the adjointness; that is

is a bijection for all X and Y.

The dual statements are also true. Let F : CD be a functor and let Y be an object of D. Then (A,φ) is a universal morphism from F to Y if and only if (A,φ) is a representation of the functor HomD(F–,Y) from C to Set. It follows that F has a right-adjoint G if and only if HomD(F–,Y) is representable for all Y in D.[2]

See also

References

  1. ^ Hungerford, Thomas. Algebra. Springer-Verlag. p. 470. ISBN 3-540-90518-9.
  2. ^ Nourani, Cyrus (19 April 2016). A Functorial Model Theory: Newer Applications to Algebraic Topology, Descriptive Sets, and Computing Categories Topos. CRC Press. p. 28. ISBN 978-1482231502.

Read other articles:

FC St PauliNama lengkapFußball-Club St Pauli von 1910 e.V.JulukanFreibeuter der LigaBerdiri15 Mei 1910; 113 tahun lalu (1910-05-15)StadionMillerntor-Stadion(Kapasitas: 29.546[1])PresidenOke GöttlichManajerFabian HürzelerLiga2. Bundesliga2022–23ke-5, 2. BundesligaSitus webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Musim ini FC St. Pauli (Fußball-Club St Pauli von 1910 e.V.) adalah klub sepak bola Jerman yang berbasis di kota Hamburg. Cabang sepak b...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: SMP Kartika IV-6 Ambulu, Jember – berita · surat kabar · buku · cendekiawan · JSTOR SMP KARTIKA IV-6 AMBULUInformasiDidirikanTahun 1966JenisSwastaNomor Statistik Sekolah204052426087Nomor Pokok Sekolah Na...

 

County in Kansas, United States County in KansasHarvey CountyCountyFormer Carnegie Library in Kansas, currently is the Harvey County Historical MuseumLocation within the U.S. state of KansasKansas's location within the U.S.Coordinates: 38°03′N 97°26′W / 38.050°N 97.433°W / 38.050; -97.433Country United StatesState KansasFoundedMarch 7, 1872Named forJames HarveySeatNewtonLargest cityNewtonArea • Total541 sq mi (1,400 km2)...

Football tournamentThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: ELF Cup – news · newspapers · books · scholar · JSTOR (November 2011) (Learn how and when to remove this template message) ELF CupOfficial LogoTournament detailsHost countryNorth CyprusDates19 November – 25 NovemberTeams8Venue(s)1 (in ...

 

Arema FCMusim 2019CEOAgus SoerjantoHead CoachMilomir ŠešlijaStadion Stadion Kanjuruhan Stadion Gajayana Liga 19thPiala IndonesiaBabak 16 besarPencetak gol terbanyakLiga: Makan Konaté (16)Seluruh kompetisi: Makan Konaté (18)Jumlah penonton kandang tertinggi40,412 (vs. Persija Jakarta, 23 November 2019)Jumlah penonton kandang terendah4,318 (vs. Bali United, 16 Desember 2019)Rata-rata jumlah penonton kandang di liga14,182 Kostum kandang Kostum tandang ← 2018 2020 → Musim 2019 adalah musi...

 

American politician Paul DonatoMember of the Massachusetts House of Representatives from the 35th Middlesex DistrictIncumbentAssumed office January 3, 2001Preceded byMike FestaMayor of MedfordIn office1980–1985Preceded byEugene F. GrantSucceeded byMarilyn Porreca Personal detailsBorn (1941-10-27) October 27, 1941 (age 82)BostonPolitical partyDemocraticAlma materUniversity of Massachusetts BostonOccupationManufacturer's RepresentativePolitician Paul J. Donato (born October 27, 1941,...

Monumento ai cadutiAutoreLuigi Venzano Data1927 Materialebronzo UbicazionePiazza Goffredo Mameli, Savona Coordinate44°18′30.19″N 8°28′44.98″E / 44.308386°N 8.479162°E44.308386; 8.479162Coordinate: 44°18′30.19″N 8°28′44.98″E / 44.308386°N 8.479162°E44.308386; 8.479162 Il Monumento ai Caduti della città di Savona si trova in Piazza Goffredo Mameli, piazza centrale della città.[1] Indice 1 Descrizione 2 Storia 3 Note 4 Altri proge...

 

Penal system of the State of Japan This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Penal system of Japan – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Tokyo Detention House in Katsushika, Tokyo The penal system of Japan (including prisons) ...

 

Historical group of Indo-European peoples Map displaying the origins of the Proto-Indo-Iranian (Ā́rya/Aryan) Sintashta culture as a migration of peoples from the Bronze Age European Corded Ware culture[1][2][3][4] through the Fatyanovo-Balanovo culture[5][6][7][note 1] The Sintashta-Petrovka culture (red) expanded into the Andronovo culture (orange) in the 2nd millennium BC, overlapping the Oxus civilization (green) in the sou...

Thailand clothing This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sinh clothing – news · newspapers · books · scholar · JSTOR (February 2016) (Learn how and when to remove this message) Laotian women wearing sinhs The Sinh (Lao: ສິ້ນ, Lao pronunciation: [sȉn]; Thai: ซิ่น, RTGS:&...

 

Assassin's Creed SyndicateJack l'ÉventreurDéveloppeur Ubisoft MontpellierÉditeur UbisoftCompositeur Bear McCrearyDate de sortie INT : 15 décembre 2015 Franchise Assassin's CreedGenre Action-aventureMode de jeu SoloPlate-forme Microsoft Windows, PlayStation 4, Xbox OneLangue Anglais, français, italien, allemand, espagnol, tchèque, néerlandais, hongrois, japonais, coréen, polonais, portugais brésilien, russe, chinois simplifié, chinois traditionnel, danois, finnois, norvégien, s...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

Pour les articles homonymes, voir De Gubernatis. Angelo De GubernatisPhotographie d'archives de la Société de géographie (16 mai 1887).Titre de noblesseComteà partir de 1881BiographieNaissance 7 avril 1840TurinDécès 26 février 1913 (à 72 ans)RomeNom de naissance Giuseppe Angelo De GubernatisNationalité italienneFormation Université de TurinUniversité Humboldt de BerlinActivités Philologue, poète, orientaliste, ethnologue, écrivain, critique d'art, historien de la littérat...

 

Funeral de Juan Pablo II Imágenes de la capilla ardiente y del funeral de Juan Pablo II.LocalizaciónPaís Ciudad del VaticanoLugar Ciudad del VaticanoDatos generalesTipo Muerte y funeralOrganizador Santa SedeParticipantes Curia romanaPolíticos y realezaHistóricoFecha Muerte: 2 de abril de 2005Funeral: 8 de abril de 2005Desenlace[editar datos en Wikidata] Los países indicados de color morado enviaron delegados al funeral de Juan Pablo II. La Muerte y funeral de Juan Pablo II, tu...

 

Mars Polar Lander, juga dikenal sebagai Mars Surveyor Lander '98, adalah robot pesawat ruang angkasa pendarat 290 kilogram diluncurkan oleh NASA pada tanggal 3 Januari 1999 sampai mempelajari tanah dan iklim Planum Australe, sebuah daerah dekat kutub selatan di Mars. Ini merupakan bagian dari misi Mars Surveyor '98. Pada tanggal 3 Desember 1999, bagaimanapun, setelah fase keturunan itu diharapkan akan selesai, pendarat gagal membangun kembali komunikasi dengan Bumi. Itu ditentukan bahwa peny...

Cet article est une ébauche concernant une localité des îles Baléares. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Llorenç. Sant Llorenç des Cardassar San Lorenzo de Cardessar (es) Héraldique Vue de Sant Llorenç des Cardassar. Administration Pays Espagne Communauté autonome Îles Baléares Comarque Llevant District judic. Manacor Maire Mandat Mateu Puigròs Sureda (...

 

American college basketball season 2008–09 Oklahoma Sooners men's basketballNCAA Tournament, Elite EightConferenceBig 12 ConferenceRankingCoachesNo. 7APNo. 6Record30–6 (13–3 Big 12)Head coachJeff Capel IIIHome arenaLloyd Noble CenterSeasons← 2007–082009–10 → 2008–09 Big 12 men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT No. 14 Kansas 14 – 2   .875 27 – 8   .771 No. 7 Oklaho...

 

У этого топонима есть и другие значения, см. Кстово (значения). В том же сельском поселении есть деревни Большое и Малое Кстово. ПосёлокКстово 58°00′14″ с. ш. 38°51′25″ в. д.HGЯO Страна  Россия Субъект Федерации Ярославская область Муниципальный район Рыбинский Сел�...

Voce principale: Vita Nova. Donne ch'avete intelletto d'amoreAutoreDante Alighieri 1ª ed. originaleXIII secolo Generecanzone Lingua originaleitaliano Modifica dati su Wikidata · Manuale Donne ch'avete intelletto d'amore è una canzone di soli endecasillabi di Dante Alighieri, contenuta nel XIX capitolo[1] della Vita Nova. Indice 1 Struttura e temi 2 Note 3 Bibliografia 4 Voci correlate 5 Altri progetti Struttura e temi Donne ch'avete costituita da 70 versi endecasillabi divisi...

 

В Википедии есть статьи о других людях с фамилией Стрикленд. Эту страницу предлагается переименовать в «Стрикленд, Ширли».Пояснение причин и обсуждение — на странице Википедия:К переименованию/28 июля 2022. Пожалуйста, основывайте свои аргументы на правилах именования �...