Hasse–Weil zeta function

In mathematics, the Hasse–Weil zeta function attached to an algebraic variety V defined over an algebraic number field K is a meromorphic function on the complex plane defined in terms of the number of points on the variety after reducing modulo each prime number p. It is a global L-function defined as an Euler product of local zeta functions.

Hasse–Weil L-functions form one of the two major classes of global L-functions, alongside the L-functions associated to automorphic representations. Conjecturally, these two types of global L-functions are actually two descriptions of the same type of global L-function; this would be a vast generalisation of the Taniyama-Weil conjecture, itself an important result in number theory.

For an elliptic curve over a number field K, the Hasse–Weil zeta function is conjecturally related to the group of rational points of the elliptic curve over K by the Birch and Swinnerton-Dyer conjecture.

Definition

The description of the Hasse–Weil zeta function up to finitely many factors of its Euler product is relatively simple. This follows the initial suggestions of Helmut Hasse and André Weil, motivated by the Riemann zeta function, which results from the case when V is a single point.[1]

Taking the case of K the rational number field , and V a non-singular projective variety, we can for almost all prime numbers p consider the reduction of V modulo p, an algebraic variety Vp over the finite field with p elements, just by reducing equations for V. Scheme-theoretically, this reduction is just the pullback of the Néron model of V along the canonical map Spec → Spec . Again for almost all p it will be non-singular. We define a Dirichlet series of the complex variable s,

which is the infinite product of the local zeta functions

where Nk is the number of points of V defined over the finite field extension of .

This is well-defined only up to multiplication by rational functions in for finitely many primes p.

Since the indeterminacy is relatively harmless, and has meromorphic continuation everywhere, there is a sense in which the properties of Z(s) do not essentially depend on it. In particular, while the exact form of the functional equation for Z(s), reflecting in a vertical line in the complex plane, will definitely depend on the 'missing' factors, the existence of some such functional equation does not.

A more refined definition became possible with the development of étale cohomology; this neatly explains what to do about the missing, 'bad reduction' factors. According to general principles visible in ramification theory, 'bad' primes carry good information (theory of the conductor). This manifests itself in the étale theory in the Ogg–Néron–Shafarevich criterion for good reduction; namely that there is good reduction, in a definite sense, at all primes p for which the Galois representation ρ on the étale cohomology groups of V is unramified. For those, the definition of local zeta function can be recovered in terms of the characteristic polynomial of

Frob(p) being a Frobenius element for p. What happens at the ramified p is that ρ is non-trivial on the inertia group I(p) for p. At those primes the definition must be 'corrected', taking the largest quotient of the representation ρ on which the inertia group acts by the trivial representation. With this refinement, the definition of Z(s) can be upgraded successfully from 'almost all' p to all p participating in the Euler product. The consequences for the functional equation were worked out by Serre and Deligne in the later 1960s; the functional equation itself has not been proved in general.

Hasse–Weil conjecture

The Hasse–Weil conjecture states that the Hasse–Weil zeta function should extend to a meromorphic function for all complex s, and should satisfy a functional equation similar to that of the Riemann zeta function. For elliptic curves over the rational numbers, the Hasse–Weil conjecture follows[2] from the modularity theorem: each elliptic curve E over is modular.

Birch and Swinnerton-Dyer conjecture

The Birch and Swinnerton-Dyer conjecture states that the rank of the abelian group E(K) of points of an elliptic curve E is the order of the zero of the Hasse–Weil L-function L(Es) at s = 1, and that the first non-zero coefficient in the Taylor expansion of L(Es) at s = 1 is given by more refined arithmetic data attached to E over K.[3] The conjecture is one of the seven Millennium Prize Problems listed by the Clay Mathematics Institute, which has offered a $1,000,000 prize for the first correct proof.[4]

Elliptic curves over Q

An elliptic curve is a specific type of variety. Let E be an elliptic curve over Q of conductor N. Then, E has good reduction at all primes p not dividing N, it has multiplicative reduction at the primes p that exactly divide N (i.e. such that p divides N, but p2 does not; this is written p || N), and it has additive reduction elsewhere (i.e. at the primes where p2 divides N). The Hasse–Weil zeta function of E then takes the form

Here, ζ(s) is the usual Riemann zeta function and L(E, s) is called the L-function of E/Q, which takes the form[5]

where, for a given prime p,

where in the case of good reduction ap is p + 1 − (number of points of E mod p), and in the case of multiplicative reduction ap is ±1 depending on whether E has split (plus sign) or non-split (minus sign) multiplicative reduction at p. A multiplicative reduction of curve E by the prime p is said to be split if -c6 is a square in the finite field with p elements.[6]

There is a useful relation not using the conductor:

1. If p doesn't divide (where is the discriminant of the elliptic curve) then E has good reduction at p.

2. If p divides but not then E has multiplicative bad reduction at p.

3. If p divides both and then E has additive bad reduction at p.

See also

References

  1. ^ "The Hasse-Weil Zeta Function of a Quotient Variety" (PDF). Archived from the original (PDF) on 2022-10-19. Retrieved 2024-04-29.
  2. ^ Milne, James S. (2016). "The Riemann hypothesis over finite fields: from Weil to the present day". Notices of the International Congress of Chinese Mathematicians. 4 (2): 14–52. arXiv:1509.00797. doi:10.4310/ICCM.2016.v4.n2.a4.
  3. ^ Wiles, Andrew (2006). "The Birch and Swinnerton-Dyer conjecture" (PDF). In Carlson, James; Jaffe, Arthur; Wiles, Andrew (eds.). The Millennium prize problems. American Mathematical Society. pp. 31–44. ISBN 978-0-8218-3679-8. MR 2238272. Archived from the original (PDF) on 2018-03-29. Retrieved 2022-04-13.
  4. ^ Birch and Swinnerton-Dyer Conjecture at Clay Mathematics Institute
  5. ^ Section C.16 of Silverman, Joseph H. (1992), The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, New York: Springer-Verlag, ISBN 978-0-387-96203-0, MR 1329092
  6. ^ "Number theory - Testing to see if $\ell$ is of split or nonsplit multiplicative reduction".

Bibliography

  • J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), 1969/1970, Sém. Delange–Pisot–Poitou, exposé 19

Read other articles:

Questa voce sugli argomenti scienziati statunitensi e medici statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. John Franklin Enders Premio Nobel per la medicina 1954 John Franklin Enders (West Hartford, 10 febbraio 1897 – Waterford, 8 settembre 1985) è stato un biologo, batteriologo, virologo e immunologo statunitense, vincitore di premio Nobel per la medicina. Indice 1 Biografia 2 Onorificenze 3 Note 4 Altri progetti 5 Collegamenti ...

 

 

Liste des 202 communes de la province de Huesca dans la Communauté autonome d'Aragon (Espagne). Carte des communes de la province de Huesca Sommaire : Haut – A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Commune Habitants (2005) A Abiego 277 Abizanda 128 Adahuesca 162 Agüero 165 Aínsa-Sobrarbe 1.826 Aisa 411 Albalate de Cinca 1.189 Albalatillo 265 Albelda 877 Albero Alto 122 Albero Bajo 96 Alberuela de Tubo 370 Alcalá de Gurrea 282 Alcalá del Obispo 364 Alcampell 846 Alcolea...

 

 

Jasti Chelameswar Hakim Mahkamah Agung IndiaMasa jabatan10-10-2011–22-06-2018 Informasi pribadiKebangsaanIndiaProfesiHakimSunting kotak info • L • B Jasti Chelameswar adalah hakim Mahkamah Agung India. Ia mulai menjabat sebagai hakim di mahkamah tersebut pada 10-10-2011. Masa baktinya sebagai hakim berakhir pada 22-06-2018.[1] Referensi ^ Daftar Hakim di Mahkamah Agung India. Mahkamah Agung India. Diakses tanggal 10 Juni 2021.  Artikel bertopik biografi India ini ...

CaremaKomuneComune di CaremaNegara ItaliaWilayahPiedmontProvinsiProvinsi Torino (TO)Luas • Total10,5 km2 (41 sq mi)Populasi (Desember 2004) • Total754 • Kepadatan7,2/km2 (19/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos10010Kode area telepon0125 Carema adalah komune yang terletak di distrik Provinsi Torino, Italia. Kota Carema memiliki luas sebesar 10.5 km². Carema pada tahun 2004, memili...

 

 

PUBG Mobile BerdasarkanPUBG: Battlegrounds Publikasi19 Maret 2018GenreBattle royaleKarakterVictor, Sara, Carlo dan Andy Karakteristik teknisPlatformiOS dan Android MesinUnreal Engine 4Modepermainan video multipemain Format kode Daftar 30 Informasi pengembangPengembangLightSpeed & Quantum StudioPenyuntingKrafton Tencent Games VNG (en) KomponisTom SaltaBrian TylerPenerbitTencent GamesSumber kode Google Playcom.tencent.ig iTunes Store1330123889 Informasi tambahanSitus webpubgmobile.com…...

 

 

United States historic placeMonterey High SchoolU.S. National Register of Historic PlacesVirginia Landmarks Register Front and northeastern sideShow map of VirginiaShow map of the United StatesLocationSpruce St., 0.5 mi. S of US 250, Monterey, VirginiaCoordinates38°24′35″N 79°35′13″W / 38.40972°N 79.58694°W / 38.40972; -79.58694Area2 acres (0.81 ha)Built1922 (1922)ArchitectVirginia State Board of Education; Luther Wayne PuffenbargerArchitectural&#...

Newcastle United 2004–05 football seasonNewcastle United2004–05 seasonChairmanFreddy ShepherdManagerBobby Robson (until 30 August)[1]John Carver (caretaker)(from 30 August till 13 September)Graeme Souness (from 13 September)StadiumSt James' ParkFA Premier League14thFA CupSemi-finalsLeague CupFourth roundUEFA CupQuarter-finalsTop goalscorerLeague: Craig Bellamy, Alan Shearer (7)All: Alan Shearer (19)Average home league attendance51,844 Home colours Away colours Third colours ͛...

 

 

Ancient Nubian deity SebiumekerSebiumeker statue in the Carlsberg Glyptotek museum 1st century BCEMajor cult centerMeroe, KushPersonal informationSiblingsArensnuphis ? Sebiumeker was a major supreme god of procreation and fertility in Nubian mythology who was primarily worshipped in Meroe, Kush, in present-day Sudan. He is sometimes thought of as a guardian of gateways as his statues are sometimes found near doorways. He has many similarities with Atum, but has Nubian characteristics, a...

 

 

Serie B 2018-2019 Competizione Serie B Sport Calcio Edizione 48ª Organizzatore FIGC - Divisione Calcio Femminile Date dal 14 ottobre 2018al 5 maggio 2019 Luogo  Italia Partecipanti 12 Formula Girone all'italiana A/R Risultati Vincitore Inter(1º titolo) Promozioni InterEmpoli Retrocessioni Genoa WomenArezzoRoma XIV Statistiche Miglior marcatore Gloria Marinelli (26) Incontri disputati 132 Gol segnati 452 (3,42 per incontro) Cronologia della competizione 2017-2018 2019...

Indic script used to write the Punjabi language GurmukhīਗੁਰਮੁਖੀModern Gurmukhi lettersScript type Abugida Time period16th century CE-presentDirectionLeft-to-right Languages Punjabi Punjabi dialects Sant Bhasha Sindhi[1] Related scriptsParent systemsEgyptianProto-SinaiticPhoenicianAramaicBrahmi scriptGuptaSharadaLandaGurmukhīChild systemsAnandpur LipiSister systemsKhudabadi, Khojki, Mahajani, MultaniISO 15924ISO 15924Guru (310), ​GurmukhiUnicodeUnicode ...

 

 

Ловля методом херабуна Херабуна (англ. herabuna, от яп. ヘラブナ, — японский белый карась) — любительский способ ловли рыбы на поплавочную снасть на специализированные насадки, а также насадки, снасть и удилища, используемые при этом способе. Ловля заключается в забрасыва...

 

 

Manga series by Shigeru Mizuki This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Akuma-kun – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this message) You can help expand this article with text translated from the corresponding article in Japanese. (October 2011) ...

Malaysian intercity train services KTM IntercityKTM Intercity's Ekspress Rakyat Timuran at Johor Bahru Sentral. This is the last regularly scheduled overnight service in the country.OverviewNative nameKTM Antarabandar (Malay)KTM城際鐵路(Traditional Chinese)KTM城际铁路(Simplified Chinese)கேடிஎம் இண்டர்சிட்டி (Tamil)OwnerKeretapi Tanah Melayu Berhad (KTMB)Area servedPeninsular MalaysiaTransit typeInter-city railNumber of lines2Line numberWest Coast ...

 

 

Шайа Лабафангл. Shia LaBeouf Лабаф в 2022 году Имя при рождении Шайа Саид Лабаф Дата рождения 11 июня 1986(1986-06-11)[1] (37 лет) Место рождения Лос-Анджелес, Лос-Анджелес, Калифорния, США[2] Гражданство  США Профессия актёр, сценарист, режиссёр, кинопродюсер Карьера 1998 — н...

 

 

Азиатский барсук Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКласс:Мле�...

Brillevast L'église Saint-Martin. Blason Administration Pays France Région Normandie Département Manche Arrondissement Cherbourg Intercommunalité Communauté d'agglomération du Cotentin Maire Mandat Gérard Vansteelant 2020-2026 Code postal 50330 Code commune 50086 Démographie Gentilé Brillevastais Populationmunicipale 322 hab. (2021 ) Densité 36 hab./km2 Géographie Coordonnées 49° 37′ 39″ nord, 1° 24′ 52″ ouest Altitude Min. 37...

 

 

This article needs to be updated. The reason given is: this article is largely missing information about this topic from 1991 onward. Please help update this article to reflect recent events or newly available information. (September 2023)Labor unions in JapanNational organization(s)Japanese Trade Union Confederation (Rengo) National Confederation of Trade Unions (Zenroren) National Trade Union Council (Zenrokyo) OthersRegulatory authorityMinistry of Health, Labour and WelfarePrimary legisla...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

American college football season 1974 Texas Tech Red Raiders footballPeach Bowl, T 6–6 vs. VanderbiltConferenceSouthwest ConferenceRecord6–4–2 (3–4 SWC)Head coachJim Carlen (5th season)Offensive schemeNo-huddle optionDefensive coordinatorRichard Bell (5th season)Base defense4–3Home stadiumJones StadiumSeasons← 19731975 → 1974 Southwest Conference football standings vte Conf Overall Team W   L   T W   L   T No. 14 Bay...

 

 

Cet article est une ébauche concernant la géographie et la montagne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. OrographieCarte orographique de l'Est sibérien réalisée par Pierre Kropotkine en 1875.Partie de Sciences de la TerreObjet Surface terrestre (en)modifier - modifier le code - modifier Wikidata L'orographie (du grec ancien ὄρος / óros, « montagne », et γράφω / g...