A non-specialist description: the construct of a generalised and somewhat unified framework to characterise the structures that underpin numbers and their abstractions, and thus the invariants which base them, all through analytical methods.
The meaning of such a construction is nuanced, but its specific solutions and generalizations are useful. The consequence for proof of existence to such theoretical objects implies an analytical method for constructing the categoric mapping of fundamental structures for virtually any number field. As an analogue to the possible exact distribution of primes, the Langlands program allows a potential general tool for the resolution of invariance at the level of generalized algebraic structures. This in turn permits a somewhat unified analysis of arithmetic objects through their automorphic functions. The Langlands concept allows a general analysis of structuring number abstractions. This description is at once a reduction and over-generalization of the program's proper theorems, although these mathematical analogues provide its basis.
What was new in Langlands' work, besides technical depth, was the proposed connection to number theory, together with its rich organisational structure hypothesised (so-called functoriality).
Harish-Chandra's work exploited the principle that what can be done for one semisimple (or reductive) Lie group, can be done for all. Therefore, once the role of some low-dimensional Lie groups such as GL(2) in the theory of modular forms had been recognised, and with hindsight GL(1) in class field theory, the way was open to speculation about GL(n) for general n > 2.
In all these approaches technical methods were available, often inductive in nature and based on Levi decompositions amongst other matters, but the field remained demanding.[2]
The conjectures have evolved since Langlands first stated them. Langlands conjectures apply across many different groups over many different fields for which they can be stated, and each field offers several versions of the conjectures.[3] Some versions[which?] are vague, or depend on objects such as Langlands groups, whose existence is unproven, or on the L-group that has several non-equivalent definitions.
Objects for which Langlands conjectures can be stated:
Representations of reductive groups over local fields (with different subcases corresponding to archimedean local fields, p-adic local fields, and completions of function fields)
Automorphic forms on reductive groups over global fields (with subcases corresponding to number fields or function fields).
Analogues for finite fields.
More general fields, such as function fields over the complex numbers.
Conjectures
The conjectures can be stated variously in ways that are closely related but not obviously equivalent.
Langlands attached automorphic L-functions to these automorphic representations, and conjectured that every Artin L-function arising from a finite-dimensional representation of the Galois group of a number field is equal to one arising from an automorphic cuspidal representation. This is known as his reciprocity conjecture.
Roughly speaking, this conjecture gives a correspondence between automorphic representations of a reductive group and homomorphisms from a Langlands group to an L-group. This offers numerous variations, in part because the definitions of Langlands group and L-group are not fixed.
Over local fields this is expected to give a parameterization of L-packets of admissible irreducible representations of a reductive group over the local field. For example, over the real numbers, this correspondence is the Langlands classification of representations of real reductive groups. Over global fields, it should give a parameterization of automorphic forms.
Functoriality
The functoriality conjecture states that a suitable homomorphism of L-groups is expected to give a correspondence between automorphic forms (in the global case) or representations (in the local case). Roughly speaking, the Langlands reciprocity conjecture is the special case of the functoriality conjecture when one of the reductive groups is trivial.
Generalized functoriality
Langlands generalized the idea of functoriality: instead of using the general linear group GL(n), other connected reductive groups can be used. Furthermore, given such a group G, Langlands constructs the Langlands dual group LG, and then, for every automorphic cuspidal representation of G and every finite-dimensional representation of LG, he defines an L-function. One of his conjectures states that these L-functions satisfy a certain functional equation generalizing those of other known L-functions.
He then goes on to formulate a very general "Functoriality Principle". Given two reductive groups and a (well behaved) morphism between their corresponding L-groups, this conjecture relates their automorphic representations in a way that is compatible with their L-functions. This functoriality conjecture implies all the other conjectures presented so far. It is of the nature of an induced representation construction—what in the more traditional theory of automorphic forms had been called a 'lifting', known in special cases, and so is covariant (whereas a restricted representation is contravariant). Attempts to specify a direct construction have only produced some conditional results.
All these conjectures can be formulated for more general fields in place of : algebraic number fields (the original and most important case), local fields, and function fields (finite extensions of Fp(t) where p is a prime and Fp(t) is the field of rational functions over the finite field with p elements).
The geometric Langlands program, suggested by Gérard Laumon following ideas of Vladimir Drinfeld, arises from a geometric reformulation of the usual Langlands program that attempts to relate more than just irreducible representations. In simple cases, it relates l-adic representations of the étale fundamental group of an algebraic curve to objects of the derived category of l-adic sheaves on the moduli stack of vector bundles over the curve.
A 9-person collaborative project led by Dennis Gaitsgory announced a proof of the (categorical, unramified) geometric Langlands conjecture leveraging Hecke eigensheaf as part of the proof.[4][5][6][7]
Status
The Langlands conjectures for GL(1, K) follow from (and are essentially equivalent to) class field theory.
Langlands proved the Langlands conjectures for groups over the archimedean local fields (the real numbers) and (the complex numbers) by giving the Langlands classification of their irreducible representations.
Lusztig's classification of the irreducible representations of groups of Lie type over finite fields can be considered an analogue of the Langlands conjectures for finite fields.
Andrew Wiles' proof of modularity of semistable elliptic curves over rationals can be viewed as an instance of the Langlands reciprocity conjecture, since the main idea is to relate the Galois representations arising from elliptic curves to modular forms. Although Wiles' results have been substantially generalized, in many different directions, the full Langlands conjecture for remains unproved.
In 1998, Laurent Lafforgue proved Lafforgue's theorem verifying the Langlands conjectures for the general linear group GL(n, K) for function fields K. This work continued earlier investigations by Drinfeld, who proved the case GL(2, K) in the 1980s.
In 2018, Vincent Lafforgue established the global Langlands correspondence (the direction from automorphic forms to Galois representations) for connected reductive groups over global function fields.[8][9][10]
Gérard Laumon, Michael Rapoport, and Ulrich Stuhler (1993) proved the local Langlands conjectures for the general linear group GL(n, K) for positive characteristic local fields K. Their proof uses a global argument.
Michael Harris and Richard Taylor (2001) proved the local Langlands conjectures for the general linear group GL(n, K) for characteristic 0 local fields K. Guy Henniart (2000) gave another proof. Both proofs use a global argument. Peter Scholze (2013) gave another proof.
In 2008, Ngô Bảo Châu proved the "fundamental lemma", which was originally conjectured by Langlands and Shelstad in 1983 and being required in the proof of some important conjectures in the Langlands program.[11][12]
Implications
To a lay reader or even nonspecialist mathematician, abstractions within the Langlands program can be somewhat impenetrable. However, there are some strong and clear implications for proof or disproof of the fundamental Langlands conjectures.
Simply put, the Langlands project implies a deep and powerful framework of solutions, which touches the most fundamental areas of mathematics, through high-order generalizations in exact solutions of algebraic equations, with analytical functions, as embedded in geometric forms. It allows a unification of many distant mathematical fields into a formalism of powerful analytical methods.
^Frenkel, Edward (2013). Love & Math. ISBN978-0-465-05074-1. All this stuff, as my dad put it, is quite heavy: we've got Hitchin moduli spaces, mirror symmetry, A-branes, B-branes, automorphic sheaves... One can get a headache just trying to keep track of them all. Believe me, even among specialists, very few people know the nuts and bolts of all elements of this construction.
^Frenkel, Edward (2013), Love and Math: The Heart of Hidden Reality, Basic Books, p. 77, ISBN9780465069958, The Langlands Program is now a vast subject. There is a large community of people working on it in different fields: number theory, harmonic analysis, geometry, representation theory, mathematical physics. Although they work with very different objects, they are all observing similar phenomena.
^Langlands, Robert P. (1983). "Les débuts d'une formule des traces stable". U.E.R. de Mathématiques. Publications Mathématiques de l'Université Paris [Mathematical Publications of the University of Paris]. VII (13). Paris: Université de Paris. MR0697567.
^Milne, James (2015-09-02). "The Riemann Hypothesis over Finite Fields: From Weil to the Present Day". arXiv:1509.00797 [math.HO].
Kuil GuandiGuān Dì Miào (關帝廟), Wǔ Shèng Miào 武聖廟)Altar Guandi di Temple of Kwan Tai, Kalifornia, Amerika Serikat.AgamaAfiliasiTridharmaDewaGuan Yu (Sangharama atau Garanshin dalam tradisi Mahayana)LokasiNegaraBerbagai negara di mana ada Diaspora Tionghoa, KoreaArsitekturTipeKlentengGaya arsitekturArsitektur Tionghoa, Korea Kuil Guandi atau di Indonesia dikenal dengan Klenteng Kwan-te (Guan Di Miao; Kwan Te Bio), Klenteng Kwan-Kong (Kwan Kong Bio), adalah sebuah kuil khusus y...
VadomarBiographieFratrie GundomadEnfant Vithicabmodifier - modifier le code - modifier Wikidata Vadomar (latin Vadomarus) était de 360 à 361 roi alaman du peuple brisgauvien. Il était le frère de Gundomad et le père de Vithicab. Résumé Reproduction de Notitia Dignitatum avec des villes appartenant à la juridiction de Vadomar pendant son service militaire romain. L'historien romain Ammianus Marcellinus rapporte : En 354 Gundomad conclut avec son frère Vadomar un traité de paix �...
Eustache Le Sueur Eustache Le Sueur atau Lesueur (19 November 1617 – 30 April 1655) adalah seorang seniman Prancis dan salah satu pendiri Akademi Lukis Prancis. Ia dikenal karena melukis tema-tema keagamaan. Ia adalah pakar utama dari gaya neoklasik Parisian Atticisme. Catatan Referensi Artikel ini menyertakan teks dari suatu terbitan yang sekarang berada pada ranah publik: Chisholm, Hugh, ed. (1911). Le Sueur, Eustache. Encyclopædia Britannica. 16 (edisi ke-1...
Book by L. Frank Baum Father Goose: His Book First editionAuthorL. Frank BaumIllustratorW. W. DenslowCountryUnited StatesLanguageEnglishGenreChildren's literature Humor, FantasyPublisherGeorge M. Hill CompanyPublication date1899Media typePrint (Hardcover)Pages106 pp. Father Goose: His Book is a collection of nonsense poetry for children, written by L. Frank Baum and illustrated by W. W. Denslow, and first published in 1899. Though generally neglected a century later, the book was a groun...
Casato di HannoverStato Impero anglo-indiano Regno Unito di Gran Bretagna e Irlanda Regno di Gran Bretagna Regno d'Irlanda Regno di Hannover Regno di Corsica Ducato di Brunswick Casata di derivazioneBrunswick-Lüneburg Casata principaleWelfen Titoli Imperatrice d'India Re di Gran Bretagna Re del Regno Unito di Gran Bretagna e Irlanda Re d'Irlanda Re di Hannover Re di Corsica Elettore di Hannover Duca di Brunswick Duca di Brunswick-Lüneburg et alii FondatoreGiorgio di Brunswick-Lün...
Peta infrastruktur dan tata guna lahan di Komune Baby. = Kawasan perkotaan = Lahan subur = Padang rumput = Lahan pertanaman campuran = Hutan = Vegetasi perdu = Lahan basah = Anak sungaiBabyNegaraPrancisArondisemenProvinsKantonBray-sur-SeineAntarkomuneCommunauté de communes du Canton de Bray-sur-SeinePemerintahan • Wali kota (2008-2014) Christiane Bourcier • Populasi166Kode INSEE/pos77015 / 2 Population sans doubles ...
Members of President Donald Trump's Cabinet Further information: Political appointments by Donald Trump Trump CabinetCabinet of the United States2017–2021Cabinet of President Donald Trump in March 2017Date formedJanuary 20, 2017 (2017-01-20)Date dissolvedJanuary 20, 2021 (2021-01-20)People and organizationsPresidentDonald TrumpPresident's historyNo previous government office heldVice PresidentMike PenceMember party Republican PartyStatus in legislatureMaj...
Cuban-born baseball player (born 1985) In this Spanish name, the first or paternal surname is Céspedes and the second or maternal family name is Milanés. Baseball player Yoenis CéspedesCéspedes with the New York Mets in 2015OutfielderBorn: (1985-10-18) October 18, 1985 (age 38)Campechuela, Granma Province, CubaBatted: RightThrew: RightMLB debutMarch 28, 2012, for the Oakland AthleticsLast MLB appearanceAugust 1, 2020, for the New York MetsMLB sta...
Rights Theoretical distinctions Claim rights and liberty rights Individual and group rights Natural rights and legal rights Negative and positive rights Human rights Civil and political Economic, social and cultural Three generations Rights by beneficiary Accused Animals Children Consumers Creditors Deaf Disabled Elders Farmers Fetuses Humans Indigenous Intersex Kings LGBT Transgender Men Minorities Parents Fathers Mothers Patients Peasants Plants Prisoners Robots States Students Victims Wom...
Design museum and exhibition centre in Bremen, Germany Wilhelm Wagenfeld House Wilhelm Wagenfeld Houseclass=notpageimage| Wilhelm Wagenfeld House, Bremen Wilhelm Wagenfeld House (German: Wilhelm-Wagenfeld-Haus) is a design museum and exhibition centre in Bremen, Germany. Completed in the Neoclassical style in 1828, the building now carries the name of Bremen-born Wilhelm Wagenfeld (1900–1990), a major contributor to the 20th-century design of household objects. In addition to a collection o...
Peta Le Saulcy. Le Saulcy merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuvelle Anglemont Anould Aouze Arches Archettes Aroffe Arrentès-de-Corcieux Attignéville Attigny Aulnois Aumontzey Autigny-la-Tour Autreville Autrey Auzainvilliers Avillers Avrainville Avranville Aydoilles Badménil-aux-B...
دييغو بيروتي (بالإسبانية: Diego Perotti) معلومات شخصية الميلاد 26 يوليو 1988 (العمر 36 سنة)[1]بوينس آيرس الطول 1.79 م (5 قدم 10 1⁄2 بوصة)[2][2] مركز اللعب وسط الجنسية الأرجنتين معلومات النادي النادي الحالي ساليرنيتانا الرقم 88 مسيرة الشباب سنوات فريق 2000–2002 بو...
Comité de bienfaisance et de secours aux PalestiniensCadrePays Francemodifier - modifier le code - modifier Wikidata Stand du CBSP lors de la 34e Rencontre annuelle des musulmans de France en 2017. Une maquette du Dôme du Rocher au stand du CBSP lors de la 34e RAMF en 2017. Le Comité de bienfaisance et de secours aux Palestiniens (CBSP) est une association à but humanitaire créée en 1990. Lié à l’Union des organisations islamiques de France, le CBSP a rejoint en 2008 la platef...
Living arrangement for unmarried couples This article is about a living arrangement. For the situation in governmental politics, see Cohabitation (government). For a non-marital romantic relationship, see Free union. Relationships(Outline) Types Genetic or adoptive Kinship Family Parent father mother Grandparent Sibling Cousin By marriage Spouse Husband Wife Open marriage Polygamy Polyandry Polygyny Group marriage Mixed-orientation Partner(s) Significant other Boyfriend Girlfriend Cohabitatio...
A Battle that took place in 1643 during the First English Civil War 53°12.1′N 0°1.9′W / 53.2017°N 0.0317°W / 53.2017; -0.0317 Battle of WincebyPart of the First English Civil WarParliamentary cavalry at are-enactment of the Battle of WincebyDate11 October 1643LocationWinceby, LincolnshireResult Parliamentarian victoryBelligerents Royalists ParliamentariansCommanders and leaders Sir William WiddringtonSir John HendersonSir William Savile Earl of ManchesterOlive...
هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2022) أسعار مبادلة نسبة الفائدة منشورة في جريدة في مجال التمويل�...
Pour les articles homonymes, voir Sastre. Sastre Candil est un nom espagnol. Le premier nom de famille, paternel, est Sastre ; le second, maternel, souvent omis, est Candil. Carlos SastreCarlos Sastre, lors de la présentation des équipes du Tour de France 2010 à RotterdamInformationsNom de naissance Carlos Sastre CandilNaissance 22 avril 1975 (49 ans)LeganésNationalité espagnoleSpécialité GrimpeurDistinctions Médaille d'or de la province d'Ávila (2009)Médaille d'or de l'o...
Department of France Department in Occitanie, FranceTarn-et-Garonne Tarn e Garona (Occitan)DepartmentPrefecture building in Montauban FlagCoat of armsLocation of Tarn-et-Garonne in FranceCoordinates: 44°0′N 1°20′E / 44.000°N 1.333°E / 44.000; 1.333CountryFranceRegionOccitaniePrefectureMontaubanSubprefecturesCastelsarrasinGovernment • President of the Departmental CouncilMichel Weill[1] (PRG)Area1 • Total3,718 km2 (1,436...
Questa voce sull'argomento calciatori tedeschi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Andreas MayerNazionalità Germania Altezza179 cm Calcio RuoloAllenatore e centrocampista Squadra SVV Dillingen CarrieraSquadre di club1 1992-1993 Bayern Monaco0 (0)1993-1995 St. Pauli37 (2)1995-1997 Stabæk43 (8)1997-1998 Rosenborg13 (0)1998-2001 Aberdeen42 (2)2001-2003 ...