In the case of the special unitary group SU(n), the n − 1 fundamental representations are the wedge products consisting of the alternating tensors, for k = 1, 2, ..., n − 1.
The spin representation of the twofold cover of an odd orthogonal group, the odd spin group, and the two half-spin representations of the twofold cover of an even orthogonal group, the even spinor group, are fundamental representations that cannot be realized in the space of tensors.
The irreducible representations of a simply-connected compactLie group are indexed by their highest weights. These weights are the lattice points in an orthant Q+ in the weight lattice of the Lie group consisting of the dominant integral weights. It can be proved
that there exists a set of fundamental weights, indexed by the vertices of the Dynkin diagram, such that any dominant integral weight is a non-negative integer linear combination of the fundamental weights.[1] The corresponding irreducible representations are the fundamental representations of the Lie group. From the expansion of a dominant weight in terms of the fundamental weights one can take a corresponding tensor product of the fundamental representations and extract one copy of the irreducible representation corresponding to that dominant weight.[2]
Other uses
Outside of Lie theory, the term fundamental representation is sometimes loosely used to refer to a smallest-dimensional faithful representation, though this is also often called the standard or defining representation (a term referring more to the history, rather than having a well-defined mathematical meaning).
Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN978-0-387-40122-5.