Bolza surface

In mathematics, the Bolza surface, alternatively, complex algebraic Bolza curve (introduced by Oskar Bolza (1887)), is a compact Riemann surface of genus with the highest possible order of the conformal automorphism group in this genus, namely of order 48 (the general linear group of matrices over the finite field ). The full automorphism group (including reflections) is the semi-direct product of order 96. An affine model for the Bolza surface can be obtained as the locus of the equation

in . The Bolza surface is the smooth completion of the affine curve. Of all genus hyperbolic surfaces, the Bolza surface maximizes the length of the systole (Schmutz 1993). As a hyperelliptic Riemann surface, it arises as the ramified double cover of the Riemann sphere, with ramification locus at the six vertices of a regular octahedron inscribed in the sphere, as can be readily seen from the equation above.

The Bolza surface has attracted the attention of physicists, as it provides a relatively simple model for quantum chaos; in this context, it is usually referred to as the Hadamard–Gutzwiller model.[1] The spectral theory of the Laplace–Beltrami operator acting on functions on the Bolza surface is of interest to both mathematicians and physicists, since the surface is conjectured to maximize the first positive eigenvalue of the Laplacian among all compact, closed Riemann surfaces of genus with constant negative curvature.

Triangle surface

The tiling of the Bolza surface by reflection domains is a quotient of the order-3 bisected octagonal tiling.
The fundamental domain of the Bolza surface in the Poincaré disk; opposite sides are identified.

The Bolza surface is conformally equivalent to a triangle surface – see Schwarz triangle. More specifically, the Fuchsian group defining the Bolza surface is a subgroup of the group generated by reflections in the sides of a hyperbolic triangle with angles . The group of orientation preserving isometries is a subgroup of the index-two subgroup of the group of reflections, which consists of products of an even number of reflections, which has an abstract presentation in terms of generators and relations as well as . The Fuchsian group defining the Bolza surface is also a subgroup of the (3,3,4) triangle group, which is a subgroup of index 2 in the triangle group. The group does not have a realization in terms of a quaternion algebra, but the group does.

Under the action of on the Poincare disk, the fundamental domain of the Bolza surface is a regular octagon with angles and corners at

where . Opposite sides of the octagon are identified under the action of the Fuchsian group. Its generators are the matrices

where and , along with their inverses. The generators satisfy the relation

These generators are connected to the length spectrum, which gives all of the possible lengths of geodesic loops.  The shortest such length is called the systole of the surface. The systole of the Bolza surface is

The element of the length spectrum for the Bolza surface is given by

where runs through the positive integers (but omitting 4, 24, 48, 72, 140, and various higher values) (Aurich, Bogomolny & Steiner 1991) and where is the unique odd integer that minimizes

It is possible to obtain an equivalent closed form of the systole directly from the triangle group. Formulae exist to calculate the side lengths of a (2,3,8) triangles explicitly. The systole is equal to four times the length of the side of medial length in a (2,3,8) triangle, that is,

The geodesic lengths also appear in the Fenchel–Nielsen coordinates of the surface. A set of Fenchel-Nielsen coordinates for a surface of genus 2 consists of three pairs, each pair being a length and twist.  Perhaps the simplest such set of coordinates for the Bolza surface is , where .

There is also a "symmetric" set of coordinates , where all three of the lengths are the systole and all three of the twists are given by[2]

Symmetries of the surface

The four generators of the symmetry group of the Bolza surface

The fundamental domain of the Bolza surface is a regular octagon in the Poincaré disk; the four symmetric actions that generate the (full) symmetry group are:

  • R – rotation of order 8 about the centre of the octagon;
  • S – reflection in the real line;
  • T – reflection in the side of one of the 16 (4,4,4) triangles that tessellate the octagon;
  • U – rotation of order 3 about the centre of a (4,4,4) triangle.

These are shown by the bold lines in the adjacent figure. They satisfy the following set of relations:

where is the trivial (identity) action. One may use this set of relations in GAP to retrieve information about the representation theory of the group. In particular, there are four 1-dimensional, two 2-dimensional, four 3-dimensional, and three 4-dimensional irreducible representations, and

as expected.

Spectral theory

Plots of the three eigenfunctions corresponding to the first positive eigenvalue of the Bolza surface. Functions are zero on the light blue lines. These plots were produced using FreeFEM++.

Here, spectral theory refers to the spectrum of the Laplacian, . The first eigenspace (that is, the eigenspace corresponding to the first positive eigenvalue) of the Bolza surface is three-dimensional, and the second, four-dimensional (Cook 2018), (Jenni 1981). It is thought that investigating perturbations of the nodal lines of functions in the first eigenspace in Teichmüller space will yield the conjectured result in the introduction. This conjecture is based on extensive numerical computations of eigenvalues of the surface and other surfaces of genus 2. In particular, the spectrum of the Bolza surface is known to a very high accuracy (Strohmaier & Uski 2013). The following table gives the first ten positive eigenvalues of the Bolza surface.

Numerical computations of the first ten positive eigenvalues of the Bolza surface
Eigenvalue Numerical value Multiplicity
0 1
3.8388872588421995185866224504354645970819150157 3
5.353601341189050410918048311031446376357372198 4
8.249554815200658121890106450682456568390578132 2
14.72621678778883204128931844218483598373384446932 4
15.04891613326704874618158434025881127570452711372 3
18.65881962726019380629623466134099363131475471461 3
20.5198597341420020011497712606420998241440266544635 4
23.0785584813816351550752062995745529967807846993874 1
28.079605737677729081562207945001124964945310994142 3
30.833042737932549674243957560470189329562655076386 4

The spectral determinant and Casimir energy of the Bolza surface are

and

respectively, where all decimal places are believed to be correct. It is conjectured that the spectral determinant is maximized in genus 2 for the Bolza surface.

Quaternion algebra

Following MacLachlan and Reid, the quaternion algebra can be taken to be the algebra over generated as an associative algebra by generators i,j and relations

with an appropriate choice of an order.

See also

References

  • Bolza, Oskar (1887), "On Binary Sextics with Linear Transformations into Themselves", American Journal of Mathematics, 10 (1): 47–70, doi:10.2307/2369402, JSTOR 2369402
  • Katz, M.; Sabourau, S. (2006). "An optimal systolic inequality for CAT(0) metrics in genus two". Pacific J. Math. 227 (1): 95–107. arXiv:math.DG/0501017. doi:10.2140/pjm.2006.227.95. S2CID 16510851.
  • Schmutz, P. (1993). "Riemann surfaces with shortest geodesic of maximal length". GAFA. 3 (6): 564–631. doi:10.1007/BF01896258. S2CID 120508826.
  • Aurich, R.; Bogomolny, E.B.; Steiner, F. (1991). "Periodic orbits on the regular hyperbolic octagon". Physica D: Nonlinear Phenomena. 48 (1): 91–101. Bibcode:1991PhyD...48...91A. doi:10.1016/0167-2789(91)90053-C.
  • Cook, J. (2018). Properties of Eigenvalues on Riemann Surfaces with Large Symmetry Groups (PhD thesis, unpublished). Loughborough University.
  • Jenni, F. (1981). Über das Spektrum des Laplace-Operators auf einer Schar kompakter Riemannscher Flächen (PhD thesis). University of Basel. OCLC 45934169.
  • Strohmaier, A.; Uski, V. (2013). "An Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-Determinants on Hyperbolic Surfaces". Communications in Mathematical Physics. 317 (3): 827–869. arXiv:1110.2150. Bibcode:2013CMaPh.317..827S. doi:10.1007/s00220-012-1557-1. S2CID 14305255.
  • Maclachlan, C.; Reid, A. (2003). The Arithmetic of Hyperbolic 3-Manifolds. Graduate Texts in Math. Vol. 219. New York: Springer. ISBN 0-387-98386-4.
Specific
  1. ^ Aurich, R.; Sieber, M.; Steiner, F. (1 August 1988). "Quantum Chaos of the Hadamard–Gutzwiller Model". Physical Review Letters. 61 (5): 483–487. Bibcode:1988PhRvL..61..483A. doi:10.1103/PhysRevLett.61.483. PMID 10039347. S2CID 20390243.
  2. ^ Strohmaier, Alexander (2017). Girouard, Alexandre (ed.). "Compuration of eigenvalues, spectral zeta functions and zeta-determinants on hyperbolic surfaces". Contemporary Mathematics. 700. Montréal: Centre de Recherches Mathématiques and American Mathematical Society: 194. arXiv:1603.07356. doi:10.1090/conm/700. ISBN 9781470426651.

Read other articles:

Kamen Rider BuildGenreTokusatsuSuperhero fictionScience fictionActionComedy dramaMysteryThrillerConspiracyPembuatShotaro IshinomoriPengembangIshimori ProductionsToei CompanyDitulis olehShogo MutoSutradaraRyuta TasakiKazuya KamihoriuchiSatoshi MorotaShojiro NakazawaKyohei YamaguchiTakayuki ShibasakiPemeranAtsuhiro InukaiEiji AkasoKaho TakadaKouhei TakedaYuki OchiYukari TakiKensei MikamiYasuyuki MaekawaPengisi suaraTetsuo KanaoSora AmamiyaNaratorBucky KobaLagu pembukaBe The One by PANDORA feat...

 

 

Divisi Utama Sepak Bola El SalvadorNegara El SalvadorKonfederasiCONCACAFDibentuk1969Jumlah tim12Tingkat pada piramida1Degradasi keSegunda DivisiónPiala ligaCopa El SalvadorPiala internasionalLiga Champions CONCACAFJuara bertahan ligaFASKlub tersuksesFAS (19 gelar)Televisi penyiarCanal 4Tigo SportsSitus webhttps://laprimera.com.sv/ 2022–23 Primera División de El Salvador Primera División dari Liga de Fútbol cuscatleco Profesional (Liga Sepak Bola Profesional), lebih diketahui sebagai La ...

 

 

Pour les articles homonymes, voir Basse-Terre (homonymie). Basse-Terre Vue des monts Caraïbes depuis le fort Louis Delgrès à Basse-Terre, la cathédrale Notre-Dame-de-Guadeloupe, le monument aux morts, le fort Delgrès et l'hôtel de ville de Basse-Terre. Blason Administration Pays France Région Guadeloupe Département Guadeloupe(préfecture) Arrondissement Basse-Terre(chef-lieu) Intercommunalité Communauté d'agglomération Grand Sud Caraïbe(siège) Maire Mandat André Atallah (PS) 20...

1976 novel by Kate Wilhelm Where Late the Sweet Birds Sang Cover of first edition (hardcover)AuthorKate WilhelmCover artistM. C. EscherCountryUnited StatesLanguageEnglishGenreScience fiction, dystopianPublisherHarper & RowPublication date1976Media typePrint (hardback & paperback)Pages207AwardsLocus Award for Best Novel (1977)ISBN0-06-014654-0OCLC1529187Dewey Decimal813/.5/4LC ClassPZ4.W678 Wh PS3573.I434 Where Late the Sweet Birds Sang is a science fiction novel by Amer...

 

 

Joseph Nicéphore NiépcaNicéphore Niépca, sekitar tahun 1795.Lahir(1765-03-07)7 Maret 1765Chalon-sur-Saône, Saône-et-LoireMeninggal5 Juli 1833(1833-07-05) (umur 68)Saint-Loup-de-Varennes, Saône-et-LoirePekerjaanReka ciptaDikenal atasFotografi'mesin pembakaran internal' pertama di duniaTanda tangan Nicéphore Niépce (lahir Joseph Niépce; 7 Maret 1765 – 5 Juli 1833)[1] adalah seorang penemu asal Prancis, yang sekarang dikenal sebagai penemu fotografi dan sekaligus perint...

 

 

James LysterBorn7 September 1810 Died2 September 1891  (aged 80)Alma materTrinity College Dublin  Christianity portal James Lyster was an Anglican Dean in the Nineteenth century.[1] Lauder was educated at Trinity College, Dublin He was Dean of Leighlin from 1854 to 1864 [2] when he emigrated to Canada to become Dean of Ontario.[citation needed] He died at Ruthin on 2 September 1891.[3] References ^ Declaring His Genius: Oscar Wilde in North...

First minister for the Canadian province of Nova Scotia Premier of Nova ScotiaPremier ministre de la Nouvelle-ÉcossePrìomhaire Alba NuadhIncumbentTim Houstonsince August 31, 2021Office of the PremierStyle The Honourable (formal) Premier (informal) StatusHead of GovernmentMember ofLegislative AssemblyExecutive CouncilReports toLegislative AssemblyLieutenant GovernorSeatHalifaxAppointerLieutenant Governor of Nova Scotiawith the confidence of the Nova Scotia LegislatureTerm lengthAt His M...

 

 

Nymph transformed into hollow water reeds in Greek mythology For other uses, see Syrinx (disambiguation). Pan poursuivant Syrinx drawing by Girodet, 1826 Greek deitiesseries Primordial deities Titans and Olympians Water deities Chthonic deities Personified concepts Nymphs Alseid Anthousai Auloniad Aurae Crinaeae Daphnaie Dryads Eleionomae Epimeliads Hamadryads Hesperides Hyades Lampads Leimakids Leuce Limnades Meliae Melinoë Minthe Naiads Napaeae Nephele Nereids Oceanids Oreads Pegaeae Pegas...

 

 

У этого термина существуют и другие значения, см. Горностай (значения). Горностай Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстнороты...

The history of emotions is a field of historical research concerned with human emotion, especially variations among cultures and historical periods in the experience and expression of emotions. Beginning in the 20th century with writers such as Lucien Febvre and Peter Gay, an expanding range of methodological approaches is being applied. Scope In the last decade,[which?] the history of emotions has developed into an increasing productive and intellectually stimulating area of histori...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Shin Megami Tensei IV merupakan gim video bermain peran bertema pasca-apokaliptik asal Jepang yang dikembangkan oleh Atlus untuk perangkat Nintendo 3DS. Gim ini merupakan bagian dari seri Shin Megami Tensei, seri utama dari waralaba Megami Tensei, wal...

 

 

Protein-coding gene in the species Homo sapiens MAST1Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes2M9X, 3PS4IdentifiersAliasesMAST1, SAST, SAST170, microtubule associated serine/threonine kinase 1, MCCCHCMExternal IDsOMIM: 612256 MGI: 1861901 HomoloGene: 10543 GeneCards: MAST1 Gene location (Human)Chr.Chromosome 19 (human)[1]Band19p13.13Start12,833,951 bp[1]End12,874,952 bp[1]Gene location (Mouse)Chr.Chromosome 8 (mouse)[2]Band8 C3|...

Concierge (portiere) in un hotel di Roma. Un portiere[1] o portinaio[2] è un lavoratore che ha il compito di sorvegliare un immobile di natura residenziale, produttiva o terziaria. Indice 1 Compiti 2 Origine del nome 3 Nel mondo 3.1 Italia 3.2 Svizzera 4 Note 5 Bibliografia 6 Filmografia 7 Altri progetti 8 Collegamenti esterni Compiti Il portiere in genere deve accogliere i visitatori dell'immobile e fornire loro le informazioni richieste, ma spesso tra i suoi compiti è comp...

 

 

Series of localized seismic events within a short time period Noto earthquake swarm (2020–2024) Chronology of the 2003–2004 Ubaye earthquake swarm Complete caption Each red bar shows the number of earthquakes daily detected (left-handside scale). More than 16,000 earthquakes were detected within 2 years. White circles show the magnitude of ~1,400 earthquakes which could be located (right-handside magnitude scale). Sismalp (the local monitoring network) was not able to locate all events be...

 

 

British businessman and Conservative politician, former Deputy Prime Minister of the United Kingdom For the senior civil servant and General Medical Council Registrar, see Michael Heseltine (civil servant). This article may be too long to read and navigate comfortably. Consider splitting content into sub-articles, condensing it, or adding subheadings. Please discuss this issue on the article's talk page. (December 2023) The Right HonourableThe Lord HeseltineCH PCOfficial portrait, 2007Dep...

American actor (born 1979) Jason MomoaMomoa at San Diego Comic-Con in 2018BornJoseph Jason Namakaeha Momoa (1979-08-01) August 1, 1979 (age 44)Honolulu, Hawaii, U.S.Alma materUniversity of Hawaiʻi at MānoaOccupationsActorfilmmakerYears active1999–presentAgentGoldenscreen ManagementSpouse Lisa Bonet ​ ​(m. 2017; div. 2024)​Children2Signature Joseph Jason Namakaeha Momoa (/məˈmoʊə/; born August 1, 1979[1]) is an Amer...

 

 

This is a list of parks, historic resources, reserves and recreation areas in the California State Parks system. General location of California's +139 State Parks List of parks Park name Classification County orcounties Size[1] Year established[1] Remarks acres ha Admiral William Standley State Recreation Area State recreation area Mendocino 45 18 1944 Boasts redwoods plus salmon and steelhead fishing on the Eel River.[2] Ahjumawi Lava Springs State Park State park Sh...

 

 

明朝关西八卫 赤斤蒙古卫,明朝关西八卫之一,简称赤斤卫,又作赤金卫。 明朝 明朝永乐二年(1404年)元朝丞相苦术之子塔力尼投降明朝,以其所部在赤斤站设置赤斤蒙古千户所,在今甘肃省玉门市西北赤金堡。永乐八年(1410年)升为赤斤卫,正德年间被吐鲁番汗国所破,当地人内徙肃州的南山,赤斤城空。 清朝 清圣祖康熙五十七年(1718年),恢复赤金卫,清世宗雍正...

Tondemo Skill de Isekai Hōrō MeshiSampul novel ringan volume pertamaとんでもスキルで異世界放浪メシ(Tondemo Sukiru de Isekai Hōrō Meshi)GenreKomedi,[1] isekai[1] Seri novelPengarangRen EguchiPenerbitShōsetsuka ni NarōTerbit5 Januari 2016 – sekarang Novel ringanPengarangRen EguchiIlustratorMasaPenerbitOverlapPenerbit bahasa InggrisNA J-Novel ClubImprintOverlap NovelsDemografiPriaTerbit25 November 2016 – sekarangVolume13 MangaPengarangRen EguchiIlustrator...

 

 

Shane DawsonShane Dawson pada bulan Juni 2012Informasi pribadiLahirShane Lee Yaw19 Juli 1988 (umur 35)Long Beach, California, Amerika SerikatPekerjaanKomedian, Musisi, dan pembuat filmPasanganRyland Adams (m. 2023)Situs webwww.shanedawsontv.comInformasi YouTubeKanal shane (channel utama) Shane Dawson TV Shane2 Tahun aktif2008–2020, 2021–sekarangGenre vlog comedy kecantikan musik Pelanggan19,4 juta (channel utama)[2]Total tayang4.29 milyar (channel utama)[1]&...