Faltings's theorem

Faltings's theorem
Gerd Faltings
FieldArithmetic geometry
Conjectured byLouis Mordell
Conjectured in1922
First proof byGerd Faltings
First proof in1983
GeneralizationsBombieri–Lang conjecture
Mordell–Lang conjecture
ConsequencesSiegel's theorem on integral points

Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell,[1] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings.[2] The conjecture was later generalized by replacing by any number field.

Background

Let be a non-singular algebraic curve of genus over . Then the set of rational points on may be determined as follows:

  • When , there are either no points or infinitely many. In such cases, may be handled as a conic section.
  • When , if there are any points, then is an elliptic curve and its rational points form a finitely generated abelian group. (This is Mordell's Theorem, later generalized to the Mordell–Weil theorem.) Moreover, Mazur's torsion theorem restricts the structure of the torsion subgroup.
  • When , according to Faltings's theorem, has only a finite number of rational points.

Proofs

Igor Shafarevich conjectured that there are only finitely many isomorphism classes of abelian varieties of fixed dimension and fixed polarization degree over a fixed number field with good reduction outside a fixed finite set of places.[3] Aleksei Parshin showed that Shafarevich's finiteness conjecture would imply the Mordell conjecture, using what is now called Parshin's trick.[4]

Gerd Faltings proved Shafarevich's finiteness conjecture using a known reduction to a case of the Tate conjecture, together with tools from algebraic geometry, including the theory of Néron models.[5] The main idea of Faltings's proof is the comparison of Faltings heights and naive heights via Siegel modular varieties.[a]

Later proofs

Consequences

Faltings's 1983 paper had as consequences a number of statements which had previously been conjectured:

  • The Mordell conjecture that a curve of genus greater than 1 over a number field has only finitely many rational points;
  • The Isogeny theorem that abelian varieties with isomorphic Tate modules (as -modules with Galois action) are isogenous.

A sample application of Faltings's theorem is to a weak form of Fermat's Last Theorem: for any fixed there are at most finitely many primitive integer solutions (pairwise coprime solutions) to , since for such the Fermat curve has genus greater than 1.

Generalizations

Because of the Mordell–Weil theorem, Faltings's theorem can be reformulated as a statement about the intersection of a curve with a finitely generated subgroup of an abelian variety . Generalizing by replacing by a semiabelian variety, by an arbitrary subvariety of , and by an arbitrary finite-rank subgroup of leads to the Mordell–Lang conjecture, which was proved in 1995 by McQuillan[9] following work of Laurent, Raynaud, Hindry, Vojta, and Faltings.

Another higher-dimensional generalization of Faltings's theorem is the Bombieri–Lang conjecture that if is a pseudo-canonical variety (i.e., a variety of general type) over a number field , then is not Zariski dense in . Even more general conjectures have been put forth by Paul Vojta.

The Mordell conjecture for function fields was proved by Yuri Ivanovich Manin[10] and by Hans Grauert.[11] In 1990, Robert F. Coleman found and fixed a gap in Manin's proof.[12]

Notes

  1. ^ "Faltings relates the two notions of height by means of the Siegel moduli space.... It is the main idea of the proof." Bloch, Spencer (1984). "The Proof of the Mordell Conjecture". The Mathematical Intelligencer. 6 (2): 44. doi:10.1007/BF03024155. S2CID 306251.

Citations

References

Read other articles:

Francesinha Francesinha (dalam bahasa Portugis berarti Prancis kecil) adalah hidangan roti lapis yang berasal dari Porto, negara Portugal yang dibuat dengan roti, ham basah, linguiça, sosis segar seperti chipolata, steak atau daging panggang dan ditutupi dengan keju yang meleleh dan tomat tebal panas dan saus bir yang disajikan dengan kentang goreng. Pada April 2011, makanan ini dinobatkan oleh situs AOL Travel sebagai salah satu dari sepuluh sandwich terbaik di dunia.[1][2] ...

 

 

French academic and Identitarian activist Not to be confused with Pedro Vial. Pierre VialPierre Vial in 2012.Born (1942-12-25) 25 December 1942 (age 81)NationalityFrenchOccupation(s)Medievalist, activist Pierre Vial (born 25 December 1942) is an academic medievalist tied to the Jean Moulin University Lyon 3. A Nouvelle Droite leader, he is the founder of the far-right, neopagan association Terre et Peuple. Biography Pierre Vial was born on 25 December 1942.[1] He was in his youth...

 

 

منتخب ميانمار تحت 23 سنة لكرة القدم بلد الرياضة ميانمار  الفئة كرة قدم تحت 23 سنة للرجال  [لغات أخرى]‏  رمز الفيفا MYA  الموقع الرسمي الموقع الرسمي  مشاركات تعديل مصدري - تعديل   منتخب ميانمار تحت 23 سنة لكرة القدم (بالبورمية: မြန်မာ အမျိုးသား အသက် ...

Luís Oliveira Oliveira al Cagliari nel 1992 Nazionalità  Brasile Belgio (dal 1992) Altezza 175 cm Peso 71 kg Calcio Ruolo Allenatore (ex attaccante) Squadra ASD Galaxy FC Termine carriera 2011 - giocatore Carriera Giovanili 1984 Tupan1985-1987 Anderlecht Squadre di club1 1987-1992 Anderlecht96 (36)1992-1996 Cagliari121 (42)1996-1999 Fiorentina95 (27)1999-2000 Cagliari24 (4)2000-2001 Bologna17 (1)2001-2002 Como38 (23)2002-2004 Catania74 (28)...

 

 

Artikel ini bukan mengenai Produk skalar. Perkalian skalar sebuah vektor dengan faktor 3 memanjangkan vektor itu. Perkalian skalar −a dan 2a dari vektor a Perkalian skalar (Inggris: scalar multiplication) dalam matematika, adalah salah satu operasi dasar yang mendefinisikan suatu ruang vektor dalam aljabar linear[1][2][3] (atau lebih umum, sebuah modul dalam aljabar abstrak[4][5]). Dalam suatu konteks geometri intuitif, perkalian skalar dari suatu...

 

 

Canadian adventure reality game show For the upcoming season, see The Amazing Race Canada 10. The Amazing Race CanadaThe title card used since season 3GenreReality competitionCreated byElise DoganieriBertram van MunsterBased onThe Amazing Raceby Bertram van MunsterElise DoganieriCreative directorShannon McGinnPresented byJon MontgomeryTheme music composerJohn M. KeaneCountry of originCanadaOriginal languageEnglishNo. of seasons9No. of episodes100 (and 1 recap and 6 reunion specials)Production...

这是马来族人名,“尤索夫”是父名,不是姓氏,提及此人时应以其自身的名“法迪拉”为主。 尊敬的拿督斯里哈芝法迪拉·尤索夫Fadillah bin Haji YusofSSAP DGSM PGBK 国会议员 副首相 第14任马来西亚副首相现任就任日期2022年12月3日与阿末扎希同时在任君主最高元首苏丹阿都拉陛下最高元首苏丹依布拉欣·依斯迈陛下首相安华·依布拉欣前任依斯迈沙比里 马来西亚能源转型与...

 

 

Pour les articles homonymes, voir Marry Me. Cet article est une ébauche concernant une chanson, la Finlande et le Concours Eurovision de la chanson. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Marry Me Single de Krista Siegfridsextrait de l'album Ding Dong Sortie 1er janvier 2013 Durée 3 min 02 Langue Anglais Genre Dance-pop Format Téléchargement Auteur-compositeur Krista Siegfrieds, Erik Nyholm, Kr...

 

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Осн...

 

 

Bandar Udara Internasional AlexandriaBandar Udara El NouzhaIATA: ALYICAO: HEAX ALYLokasi bandar udara di MesirInformasiJenisPublikPemilikpenerbangan sipilPengelolaPemerintahMelayaniAlexandria, MesirKetinggian dpl−2 mdplKoordinat31°11′02″N 029°56′56″E / 31.18389°N 29.94889°E / 31.18389; 29.94889Landasan pacu Arah Panjang Permukaan m kaki 04/22 2,201 7,221 Aspal 18/36 1,801 5,909 Aspal Sumber: DAFIF[1][2] Bandar Udara Iskandariyah ...

Rule in basketball In basketball, the five-second rule, or five-second violation, is a rule that helps promote continuous play. There are multiple situations where a five-second violation may occur. Five-second throw-in violation Under all basketball rule sets, a team attempting to throw a ball in-bounds has five seconds to release the ball towards the court.[1] The five second clock starts when the team throwing it in has possession of the ball (usually bounced or handed to a player ...

 

 

Traditional styles of Japanese dance This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Japanese traditional dance – news · newspapers · books · scholar · JSTOR (July 2022) (Learn how and when to remove this message) An early photograph of Japanese women in dance pose. Japanese traditional dance describes a num...

 

 

Theatre in Vienna, Austria The Carltheater in 1850 The Carltheater was a theatre in Vienna. It was in the suburbs in Leopoldstadt at Praterstraße 31 (at that time called Jägerzeile). It was the successor to the Leopoldstädter Theater. After a series of financial difficulties, that theater had been sold in 1838 to the director, Carl Carl, who continued to run it in parallel to his Theater an der Wien until 1845. Two years later, the building was partially demolished and rebuilt following th...

لينفيو   الإحداثيات 38°10′44″N 85°42′37″W / 38.1789°N 85.7103°W / 38.1789; -85.7103   [1] تاريخ التأسيس 1954  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة جيفيرسون  خصائص جغرافية  المساحة 0.481338 كيلومتر مربع0.475227 كيلومتر مربع (1 أبريل 2010)  ارتف...

 

 

Scratch Messiah, Royal Albert Hall 2015 A Scratch Messiah, People's Messiah, Come Sing Messiah, Sing-it-yourself Messiah, Do-it-yourself Messiah (DIY Messiah), or Sing along Messiah (the first two British and Australian usage, the last three common in North America) is an informal performance of Handel's Messiah in which the audience serves as the unrehearsed chorus, often supported by a carefully prepared core group. Orchestra and soloists are usually professionals, though their services ar...

 

 

両白山地 位山から望む白山周辺の山所在地 日本岐阜県、富山県、石川県、福井県位置 北緯36度9分18秒 東経136度46分17秒 / 北緯36.15500度 東経136.77139度 / 36.15500; 136.77139座標: 北緯36度9分18秒 東経136度46分17秒 / 北緯36.15500度 東経136.77139度 / 36.15500; 136.77139最高峰 白山(2,702 m) プロジェクト 山テンプレートを表示 拡大Clip 両白山地周辺...

У этого термина существуют и другие значения, см. Голландия (значения). ГрафствоГрафство Голландиянидерл. Graafschap Holland Герб Графство Голландия в XIV веке ←   → конец IX века — 1795 Столица Амстердам Язык(и) фризский, затем нидерландский Официальный язык фризский язык&...

 

 

Japanese samurai In this Japanese name, the surname is Saigō. Saigō TanomoOne of the few images of Saigō TanomoBorn(1830-05-16)May 16, 1830Wakamatsu, Aizu domain, JapanDiedApril 28, 1903(1903-04-28) (aged 72)JapanAllegiance Aizu domainYears of service1860–1869Rankkarō (senior councilor)Battles/warsBattle of Shirakawa, Battle of Aizu, Battle of HakodateOther workPriest at Tōshō-gū Shrine Saigō Tanomo (西郷 頼母, May 16, 1830 – April 28, 1903) was a Japanese samur...