Tate module

In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group A. Often, this construction is made in the following situation: G is a commutative group scheme over a field K, Ks is the separable closure of K, and A = G(Ks) (the Ks-valued points of G). In this case, the Tate module of A is equipped with an action of the absolute Galois group of K, and it is referred to as the Tate module of G.

Definition

Given an abelian group A and a prime number p, the p-adic Tate module of A is

where A[pn] is the pn torsion of A (i.e. the kernel of the multiplication-by-pn map), and the inverse limit is over positive integers n with transition morphisms given by the multiplication-by-p map A[pn+1] → A[pn]. Thus, the Tate module encodes all the p-power torsion of A. It is equipped with the structure of a Zp-module via

Examples

The Tate module

When the abelian group A is the group of roots of unity in a separable closure Ks of K, the p-adic Tate module of A is sometimes referred to as the Tate module (where the choice of p and K are tacitly understood). It is a free rank one module over Zp with a linear action of the absolute Galois group GK of K. Thus, it is a Galois representation also referred to as the p-adic cyclotomic character of K. It can also be considered as the Tate module of the multiplicative group scheme Gm,K over K.

The Tate module of an abelian variety

Given an abelian variety G over a field K, the Ks-valued points of G are an abelian group. The p-adic Tate module Tp(G) of G is a Galois representation (of the absolute Galois group, GK, of K).

Classical results on abelian varieties show that if K has characteristic zero, or characteristic ℓ where the prime number p ≠ ℓ, then Tp(G) is a free module over Zp of rank 2d, where d is the dimension of G.[1] In the other case, it is still free, but the rank may take any value from 0 to d (see for example Hasse–Witt matrix).

In the case where p is not equal to the characteristic of K, the p-adic Tate module of G is the dual of the étale cohomology .

A special case of the Tate conjecture can be phrased in terms of Tate modules.[2] Suppose K is finitely generated over its prime field (e.g. a finite field, an algebraic number field, a global function field), of characteristic different from p, and A and B are two abelian varieties over K. The Tate conjecture then predicts that

where HomK(A, B) is the group of morphisms of abelian varieties from A to B, and the right-hand side is the group of GK-linear maps from Tp(A) to Tp(B). The case where K is a finite field was proved by Tate himself in the 1960s.[3] Gerd Faltings proved the case where K is a number field in his celebrated "Mordell paper".[4]

In the case of a Jacobian over a curve C over a finite field k of characteristic prime to p, the Tate module can be identified with the Galois group of the composite extension

where is an extension of k containing all p-power roots of unity and A(p) is the maximal unramified abelian p-extension of .[5]

Tate module of a number field

The description of the Tate module for the function field of a curve over a finite field suggests a definition for a Tate module of an algebraic number field, the other class of global field, introduced by Kenkichi Iwasawa. For a number field K we let Km denote the extension by pm-power roots of unity, the union of the Km and A(p) the maximal unramified abelian p-extension of . Let

Then Tp(K) is a pro-p-group and so a Zp-module. Using class field theory one can describe Tp(K) as isomorphic to the inverse limit of the class groups Cm of the Km under norm.[5]

Iwasawa exhibited Tp(K) as a module over the completion Zp[[T]] and this implies a formula for the exponent of p in the order of the class groups Cm of the form

The Ferrero–Washington theorem states that μ is zero.[6]

See also

Notes

References

  • Faltings, Gerd (1983), "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern", Inventiones Mathematicae, 73 (3): 349–366, Bibcode:1983InMat..73..349F, doi:10.1007/BF01388432, S2CID 121049418
  • "Tate module", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Manin, Yu. I.; Panchishkin, A. A. (2007), Introduction to Modern Number Theory, Encyclopaedia of Mathematical Sciences, vol. 49 (Second ed.), ISBN 978-3-540-20364-3, ISSN 0938-0396, Zbl 1079.11002
  • Murty, V. Kumar (2000), Introduction to abelian varieties, CRM Monograph Series, vol. 3, American Mathematical Society, ISBN 978-0-8218-1179-5
  • Section 13 of Rohrlich, David (1994), "Elliptic curves and the Weil–Deligne group", in Kisilevsky, Hershey; Murty, M. Ram (eds.), Elliptic curves and related topics, CRM Proceedings and Lecture Notes, vol. 4, American Mathematical Society, ISBN 978-0-8218-6994-9
  • Tate, John (1966), "Endomorphisms of abelian varieties over finite fields", Inventiones Mathematicae, 2 (2): 134–144, Bibcode:1966InMat...2..134T, doi:10.1007/bf01404549, MR 0206004, S2CID 245902

Read other articles:

Douce I Dulce I (juga Dulcia atau Dolça, dipanggil dari Rouergue atau dari Gévaudan) (tahun 1090 – 1127) merupakan putri Gilbert I dari Gévaudan dan Gerberge dari Provence dan istri Ramón Berenguer III, Comte Barcelona. Pada tahun 1112, ia menjadi ahli waris kabupaten Provence lewat ibundanya. Ia menikahi dengan Ramón Berenguer di Arles pada tanggal 3 Februari pada tahun itu. Pada tahun 1113, Dulce menyerahkan haknya atas Provence, Gévaudan, dan Viscount Millau kepada suaminya. Menuru...

 

Bharat RatnaChidambaram SubramaniamC. Subramaniam di sebuah tempat felikitasi Menteri PertanianMasa jabatan1964–1966Perdana MenteriLal Bahadur Shastri PendahuluSwaran SinghPenggantiJagjivan RamDeputi Ketua Komisi PerencanaanMasa jabatan2 Mei 1971 – 22 Juli 1972Perdana MenteriIndira Gandhi PendahuluD. R. GadgilPenggantiDurga Prasad DharMenteri KeuanganMasa jabatan1975–1977Perdana MenteriIndira Gandhi PendahuluYashwantrao ChavanPenggantiHaribhai M. PatelMenteri PertahananMasa jab...

 

1942 aviation accident 1942 Qantas Short Empire shootdownVH-ABB, a Qantas Short Empire similar to the aircraft involved.AccidentDate30 January 1942SummaryShootdownSiteWest Timor, Dutch East IndiesAircraftAircraft typeShort Empire S.23OperatorQantasRegistrationG-AEUHFlight originEl Tari International AirportDestinationDarwin International AirportOccupants18Fatalities13Survivors5 The 1942 Qantas Short Empire shoot-down was an incident that occurred in the early days of the Pacific War duri...

Sint-TruidenNama lengkapKoninklijke Sint-TruidenseVoetbalverenigingJulukanDe Kanaries (The Canaries)Berdiri23 February 1924StadionStayen, Sint-Truiden(Kapasitas: 14,600[1])PemilikDMM.comKetuaDavid MeekersManajerBernd HollerbachLigaBelgian First Division A2020–21Belgian First Division A, 10thSitus webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Musim iniKoninklijke Sint-Truidense Voetbalvereniging (pengucapan bahasa Belanda: [ˈkoːnɪŋkləkə sɪnt trœy̯d...

 

Gap-dongGenreDrama kriminal, Thriller, DramaDitulis olehKwon Eum-miSutradaraJo Soo-wonPemeranYoon Sang-hyun Sung Dong-il Kim Min-jung Kim Ji-won Lee JoonNegara asalKorea SelatanBahasa asliKoreaJmlh. episode20ProduksiProduser eksekutifKang Hee-junLokasi produksiKoreaDurasi70 menit Jumat dan Sabtu pukul 20:40 (WSK)Rumah produksiPan EntertainmentDistributorCJ E&MRilis asliRilis11 April (2014-04-11) –21 Juni 2014 (2014-6-21) Gap-dong (Hangul: 갑동이; RR:&...

 

American politician James LandyLandy in 1859Member of the U.S. House of Representativesfrom Pennsylvania's 3rd districtIn officeMarch 4, 1857 – March 3, 1859Preceded byWilliam MillwardSucceeded byJohn P. Verree Personal detailsBorn(1813-10-13)October 13, 1813Philadelphia, Pennsylvania, USDiedJuly 25, 1875(1875-07-25) (aged 61)Philadelphia, Pennsylvania, USResting placeLawnview Memorial Park, Rockledge, Pennsylvania, USPolitical partyDemocratic James Landy (October ...

Map of the life expectancy at birth in 2019 in the world (2020 report)   ≥ 82.5   80.0 – 82.4   77.5 – 79.9   75.0 – 77.4   72.5 – 74.9   70.0 – 72.4   67.5 – 69.9   65.0 – 67.4   62.5 – 64.9   60.0 – 62.4   55.0 – 59.9   < 55.0   No data This list of countries by life expectancy provides a comprehensive list of countries alongside their r...

 

مايكروسوفت أوفيس 2010معلومات عامةنوع حزمة مكتبية نسخة البرنامج نظام التشغيل  القائمة ... ويندوز إكس بيويندوز فيستاويندوز سيرفر 2008ويندوز سيرفر 2003ويندوز 7ويندوز 8 المطورون مايكروسوفت موقع الويب products.office.com… (الإنجليزية) معلومات تقنيةأدوات الواجهة أو إطار العمل دوت نت فريمو...

 

Dustin Nguyen al Sundance Film Festival 2007 Dustin Nguyen, pseudonimo di Nguyễn Xuân Trí[1] (Saigon, 17 settembre 1962), è un attore e artista marziale vietnamita naturalizzato statunitense. Indice 1 Biografia 1.1 Vita privata 2 Filmografia parziale 2.1 Attore 2.1.1 Cinema 2.1.2 Televisione 2.2 Regista 2.3 Sceneggiatore e produttore 3 Note 4 Altri progetti 5 Collegamenti esterni Biografia Sua madre, My Le, era attrice e ballerina e suo padre, Xuan Phat, era un attore, sceneggiat...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

 

Species of primate Bornean slow loris redirects here. For other slow lorises of Borneo that have shared that name, see Bornean slow loris (disambiguation). Nycticebus borneanus Conservation status Vulnerable  (IUCN 3.1)[1] CITES Appendix I (CITES)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Strepsirrhini Family: Lorisidae Genus: Nycticebus Species: N. borneanus Binomial name Nycticeb...

Cake made from ginger, oats and treacle For other uses, see Parkin (disambiguation). ParkinYorkshire parkinPlace of originEnglandRegion or stateNorthern EnglandMain ingredientsFlour, oatmeal, molasses, ginger, lard or butter Parkin is a gingerbread cake traditionally made with oatmeal and black treacle,[1] which originated in Northern England. Often associated with Yorkshire,[2] it is widespread and popular elsewhere, notably in Lancashire. Parkin is baked to a hard cake but w...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій...

 

Rugby league team season 2010 Melbourne Storm seasonNRL Rank16th (wooden spoon)2010 recordWins: 14; draws: 0; losses: 10Points scoredFor: 489; against: 363Team informationCEOBrian Waldron Matt Hanson Frank Stanton (acting) Ron GauciCoachCraig BellamyCaptainCameron Smith (20 Games) Cooper Cronk (3 Games) Adam Blair (1 Game)StadiumAAMI Park – 30,050 (9 Games) Etihad Stadium - 53,500 (3 Games)Avg. attendance14,670High attendance25,480 (Round 4)[a]Top scorersTr...

Monument in Tallinn, Estonia You can help expand this article with text translated from the corresponding article in Estonian. (August 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text ...

 

State of West Germany This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Württemberg-Hohenzollern – news · newspapers · books · scholar · JSTOR (March 2023) (Learn how and when to remove this message) Württemberg-HohenzollernWurtemberg-HohenzollernPart of French-administered GermanyState of West Germany1945...

 

High-speed rail line in Germany Cologne–Frankfurt high-speed rail lineOverviewNative nameNeubaustrecke Köln-Rhein/MainLine number 2651 Köln-Deutz (h)–Köln Steinstr 2660 Köln-Deutz (t)–Köln Gummersbacher Str 2690 Köln Steinstr–Frankfurt (Main) Stadion 3509 Breckenheim–Wiesbaden-Kinzenberg 3656 Frankfurt (Main) Flughfn–Zeppelinheim LocaleNorth Rhine-Westphalia, Rhineland-Palatinate and Hesse, GermanyServiceTypeHigh-speed railRoute number472Rolling stockICE 3, ICE 4HistoryCompl...

مدرسة ثانوية طالقاني دبیرستان طالقانی مدرسة ثانوية طالقاني معلومات الموقع الجغرافي المدينة تبريز البلد  إيران تعديل مصدري - تعديل   مدرسة ثانوية طالقاني هي مدرسة تاريخية تعود إلى جمهورية أذربيجان الشعبية، وتقع في تبريز. تم هدم المدرسة في أغسطس 2012.[1][2] مراجع ^ ...

 

British television awards BAFTA Television AwardsCurrent: 2024 British Academy Television AwardsBritish Academy Television Awards logoAwarded forThe best in televisionCountryUnited KingdomFirst awarded1955; 69 years ago (1955)Websitebafta.org The BAFTA TV Awards, or British Academy Television Awards, are presented in an annual award show hosted by the British Academy of Film and Television Arts. They have been awarded annually since 1955. Background The first-ever Awards, gi...