The weak Bombieri–Lang conjecture for surfaces states that if is a smooth surface of general type defined over a number field , then the -rational points of do not form a dense set in the Zariski topology on .[1]
The general form of the Bombieri–Lang conjecture states that if is a positive-dimensional algebraic variety of general type defined over a number field , then the -rational points of do not form a dense set in the Zariski topology.[2][3][4]
The refined form of the Bombieri–Lang conjecture states that if is an algebraic variety of general type defined over a number field , then there is a dense open subset of such that for all number field extensions over , the set of -rational points in is finite.[4]
History
The Bombieri–Lang conjecture was independently posed by Enrico Bombieri and Serge Lang. In a 1980 lecture at the University of Chicago, Enrico Bombieri posed a problem about the degeneracy of rational points for surfaces of general type.[1] Independently in a series of papers starting in 1971, Serge Lang conjectured a more general relation between the distribution of rational points and algebraic hyperbolicity,[1][5][6][7] formulated in the "refined form" of the Bombieri–Lang conjecture.[4]
Generalizations and implications
The Bombieri–Lang conjecture is an analogue for surfaces of Faltings's theorem, which states that algebraic curves of genus greater than one only have finitely many rational points.[8]
If true, the Bombieri–Lang conjecture would resolve the Erdős–Ulam problem, as it would imply that there do not exist dense subsets of the Euclidean plane all of whose pairwise distances are rational.[8][9]
^ abcDas, Pranabesh; Turchet, Amos (2015), "Invitation to integral and rational points on curves and surfaces", in Gasbarri, Carlo; Lu, Steven; Roth, Mike; Tschinkel, Yuri (eds.), Rational Points, Rational Curves, and Entire Holomorphic Curves on Projective Varieties, Contemporary Mathematics, vol. 654, American Mathematical Society, pp. 53–73, arXiv:1407.7750, doi:10.1090/conm/654/13215, ISBN978-1-4704-1458-0
^ abConceição, Ricardo; Ulmer, Douglas; Voloch, José Felipe (2012), "Unboundedness of the number of rational points on curves over function fields", New York Journal of Mathematics, 18: 291–293