Generalized Jacobian

In algebraic geometry a generalized Jacobian is a commutative algebraic group associated to a curve with a divisor, generalizing the Jacobian variety of a complete curve. They were introduced by Maxwell Rosenlicht in 1954, and can be used to study ramified coverings of a curve, with abelian Galois group. Generalized Jacobians of a curve are extensions of the Jacobian of the curve by a commutative affine algebraic group, giving nontrivial examples of Chevalley's structure theorem.

Definition

Suppose C is a complete nonsingular curve, m an effective divisor on C, S is the support of m, and P is a fixed base point on C not in S. The generalized Jacobian Jm is a commutative algebraic group with a rational map f from C to Jm such that:

  • f takes P to the identity of Jm.
  • f is regular outside S.
  • f(D) = 0 whenever D is the divisor of a rational function g on C such that g≡1 mod m.

Moreover Jm is the universal group with these properties, in the sense that any rational map from C to a group with the properties above factors uniquely through Jm. The group Jm does not depend on the choice of base point P, though changing P changes that map f by a translation.

Structure of the generalized Jacobian

For m = 0 the generalized Jacobian Jm is just the usual Jacobian J, an abelian variety of dimension g, the genus of C.

For m a nonzero effective divisor the generalized Jacobian is an extension of J by a connected commutative affine algebraic group Lm of dimension deg(m)−1. So we have an exact sequence

0 → LmJmJ → 0

The group Lm is a quotient

0 → Gm → ΠUPi(ni)Lm → 0

of a product of groups Ri by the multiplicative group Gm of the underlying field. The product runs over the points Pi in the support of m, and the group UPi(ni) is the group of invertible elements of the local ring modulo those that are 1 mod Pini. The group UPi(ni) has dimension ni, the number of times Pi occurs in m. It is the product of the multiplicative group Gm by a unipotent group of dimension ni−1, which in characteristic 0 is isomorphic to a product of ni−1 additive groups.

Complex generalized Jacobians

Over the complex numbers, the algebraic structure of the generalized Jacobian determines an analytic structure of the generalized Jacobian making it a complex Lie group.

The analytic subgroup underlying the generalized Jacobian can be described as follows. (This does not always determine the algebraic structure as two non-isomorphic commutative algebraic groups may be isomorphic as analytic groups.) Suppose that C is a curve with an effective divisor m with support S. There is a natural map from the homology group H1(C − S) to the dual Ω(−m)* of the complex vector space Ω(−m) (1-forms with poles on m) induced by the integral of a 1-form over a 1-cycle. The analytic generalized Jacobian is then the quotient group Ω(−m)*/H1(C − S).

References

  • Rosenlicht, Maxwell (1954), "Generalized Jacobian varieties.", Ann. of Math., 2, 59 (3): 505–530, doi:10.2307/1969715, JSTOR 1969715, MR 0061422
  • Serre, Jean-Pierre (1988) [1959], Algebraic groups and class fields., Graduate Texts in Mathematics, vol. 117, New York: Springer-Verlag, ISBN 0-387-96648-X, MR 0103191

Read other articles:

British broadcaster and politician (born 1964) Farage redirects here. For other people with the surname, see Farage (surname). Nigel FarageFarage in 2018Leader of the Brexit Party[a]In office22 March 2019 – 6 March 2021ChairmanRichard TicePreceded byCatherine BlaiklockSucceeded byRichard TiceLeader of the UK Independence PartyActing5 October 2016 – 28 November 2016ChairmanPaul OakdenPreceded byDiane JamesSucceeded byPaul NuttallIn office5 November 2010 –&#...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Chhering Mutup – news · newspapers · books · scholar · JSTOR (February 2021) (Learn how and when to remove this template message) Naib SubedarChhering MutupACPortrait of Naib Subedar Chhering MutupBornLikar Village, Leh, Ladakh, IndiaAllegiance IndiaServic...

 

Village in North Governorate, LebanonBeit Chlala بيت شلالاVillageBeit ChlalaLocation in LebanonCoordinates: 34°13′20″N 35°50′13″E / 34.22222°N 35.83694°E / 34.22222; 35.83694Country LebanonGovernorateNorth GovernorateDistrictBatrounElevation2,000 ft (600 m)Time zoneUTC+2 (EET) • Summer (DST)+3 Beit Chlala (Arabic: بيت شلالا) is a village located in the Batroun District of the North Governorate in Lebanon.[1]...

R.P.Clemente van der PasO.Carm.Prefek Apostolik MalangGerejaGereja Katolik RomaTakhtaPrefektur Apostolik MalangPenunjukan19 Juli 1927[1](42 tahun, 36 hari)Masa jabatan berakhir16 Desember 1933(48 tahun, 186 hari)PenerusAntonius Everardo Johannes Albers, O.Carm.Informasi pribadiNama lahirClemente van der PasLahir13 Juni 1885 (1885-06-13)Hollande, BelandaWafat16 Desember 1933(1933-12-16) (umur 48)[2]KewarganegaraanBelandaDenominasiKatolik Roma R.P. ...

 

Lancement de la sonde spatiale MESSENGER. L'exploration de Mercure à l'aide de sondes spatiales est tardive car la planète intéresse moins les scientifiques que Mars et Vénus et elle représente une destination difficile à atteindre du fait de la proximité du Soleil. En 2016, seules deux sondes spatiales de la NASA ont étudié la planète, Mariner 10 qui a effectué de simples survols en 1974 et 1975 et MESSENGER lancée en 2004 qui en a fait une étude détaillée entre 2011 et 2015 a...

 

  关于与「华盛顿州」標題相近或相同的条目页,請見「华盛顿」。   此條目介紹的是美國西北部太平洋沿岸的州。关于与之同名的美国首都所在地,请见「華盛頓哥伦比亚特区」。 此條目需要擴充。 (2007年9月26日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 华盛顿州 美國联邦州State of Washington...

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Società Sportiva Dilettantistica Fidelis Andria. Associazione Sportiva Andria BATStagione 2008-2009Sport calcio Squadra Fidelis Andria Allenatore Nicola Di Leo, poi Roberto Chiancone, poi Giacinto Loconte Presidente Giovanni Ammonelli Seconda Divisione5º posto ...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Los Angeles-class nuclear-powered attack submarine of the US Navy For other ships with the same name, see USS Newport News. USS Newport News, in October 2004 History United States NameUSS Newport News NamesakeThe City of Newport News, Virginia Awarded19 April 1982 BuilderNewport News Shipbuilding Laid down3 March 1984 Launched15 March 1986 Commissioned3 June 1989 HomeportGroton, Connecticut Identification MMSI number: 369970208 Callsign: NHTV Motto Magni Nominis Umbra (Latin:Under the shadow ...

Myths and legends of English culture This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: English folklore – news · newspapers · books · scholar · JSTOR (Januar...

 

Даосизм Основные понятия Дао Дэ Инь и Ян Тайцзи У-вэй У-син Ци Цзин Бессмертие Терминология Практики Три сокровища Фэншуй Даосская диета Внутренняя алхимия Десять правил Даосские сексуальные практики Даосские источники И цзин Дао дэ цзин Чжуан-цзы Гуань-цзы Тайпинцзин �...

 

اللغة اللادينية الاسم الذاتي (بlld: ladin)‏    الناطقون 30000 [1]  الكتابة إخطاطة لاتينية  النسب لغات هندية أوروبية لغات هندية أوروبيةلغات إيطاليقيةلغات رومانسيةاللغات الرومانسية الغربيةاللغات الغالية الإيبيريةاللغات الغالية الرومانسيةGallo-Rhaetian (en) Rhaeto-Romance (en) الل�...

انقلاب يوليو 1978   التاريخ 10 يوليو 1978  البلد موريتانيا  الموقع نواكشوط  تعديل مصدري - تعديل   الرئيس المختار ولد داداه، الرئيس الذي أطاح به الانقلاب العقيد المصطفى ولد محمد السالك، قائد العملية الانقلابية ومن تولى الرئاسة إثرها انقلاب العاشر من يوليو 1978 هو انقل�...

 

Ini adalah nama Tionghoa-Indonesia, marganya adalah Gunawan (吴) Tony Gunawan吴俊明Informasi pribadiKebangsaanIndonesiaLahir9 April 1975 (umur 49)Surabaya, IndonesiaTinggi175 cm (5 ft 9 in)Ganda PriaPeringkat saat ini12 (9 Juni 2011) Rekam medali Badminton Mewakili  Indonesia Olimpiade 2000 Sydney Ganda putra World Championships 2001 Seville Men's doubles Mewakili  Amerika Serikat World Championships 2005 Anaheim Men's doubles Pan American Games 2011 Gua...

 

Golf tournament in Scotland 40th Ryder Cup MatchesDates26–28 September 2014VenueGleneagles HotelPGA Centenary CourseLocationAuchterarder, Perth & Kinross,ScotlandCaptainsPaul McGinley (Europe)Tom Watson (USA) 161⁄2 111⁄2 Europe wins the Ryder Cup← 20122016 → Gleneaglesclass=notpageimage| Location of the Gleneagles Hotelin Scotland The 40th Ryder Cup matches were held 26–28 September 2014 in Scotland on the PGA Centenary Course at the Gleneagles Hotel ...

1997 film by Raja Gosnell Home Alone 3Theatrical release posterDirected byRaja GosnellWritten byJohn HughesBased onHome Aloneby John HughesProduced byJohn HughesHilton GreenStarringAlex D. LinzHaviland MorrisCinematographyJulio MacatEdited byBruce GreenMalcolm CampbellMusic byNick Glennie-SmithProductioncompanies Hughes Entertainment Fox Family Films[1] Distributed by20th Century FoxRelease date December 12, 1997 (1997-12-12) Running time102 minutes[2]CountryUni...

 

UFC Fight Night: Anderson vs. Błachowicz 2Prodotto daUltimate Fighting Championship Data15 febbraio 2020 Città Rio Rancho SedeSanta Ana Star Center Spettatori6 449[1] Cronologia pay-per-viewUFC 247: Jones vs. ReyesUFC Fight Night: Anderson vs. Błachowicz 2UFC Fight Night: Felder vs. Hooker Progetto Wrestling Manuale UFC Fight Night: Anderson vs. Błachowicz 2 (conosciuto anche come UFC Fight Night 167 oppure UFC on ESPN+ 25) è stato un evento di arti marziali miste tenuto dal...

 

Raj Babbar Raj Babbar (lahir 23 Juni 1952) adalah seorang politikus dan pemeran film Hindi dan Punjabi yang masuk Kongres Nasional India. Ia telah tiga kali menjadi anggota Lok Sabha dan dua kali menjadi anggota Dewan Tinggi Parlemen India. Ia adalah Presiden Komite Kongres Uttar Pradesh saat ini. Referensi Pranala luar Raj Babbar di IMDb (dalam bahasa Inggris)

У этого топонима есть и другие значения, см. Сен-Совёр. КоммунаЛюс-Сен-СовёрLuz-Saint-Sauveur Герб 42°52′21″ с. ш. 0°00′02″ з. д.HGЯO Страна  Франция Регион Юг — Пиренеи Департамент Верхние Пиренеи Кантон Люс-Сен-Совёр Мэр Лоран Грансимон(2014—2020) История и география Площадь...

 

Curve that is common to two geometric objects This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2021) (Learn how and when to remove this message) In geometry, an intersection curve is a curve that is common to two geometric objects. In the simplest case, the intersection of two non-parallel planes in Euclidean 3-space is a line. In general, an interse...