Serre's modularity conjecture

Serre's modularity conjecture
FieldAlgebraic number theory
Conjectured byJean-Pierre Serre
Conjectured in1975
First proof byChandrashekhar Khare
Jean-Pierre Wintenberger
First proof in2008

In mathematics, Serre's modularity conjecture, introduced by Jean-Pierre Serre (1975, 1987), states that an odd, irreducible, two-dimensional Galois representation over a finite field arises from a modular form. A stronger version of this conjecture specifies the weight and level of the modular form. The conjecture in the level 1 case was proved by Chandrashekhar Khare in 2005,[1] and a proof of the full conjecture was completed jointly by Khare and Jean-Pierre Wintenberger in 2008.[2]

Formulation

The conjecture concerns the absolute Galois group of the rational number field .

Let be an absolutely irreducible, continuous, two-dimensional representation of over a finite field .

Additionally, assume is odd, meaning the image of complex conjugation has determinant -1.

To any normalized modular eigenform

of level , weight , and some Nebentype character

,

a theorem due to Shimura, Deligne, and Serre-Deligne attaches to a representation

where is the ring of integers in a finite extension of . This representation is characterized by the condition that for all prime numbers , coprime to we have

and

Reducing this representation modulo the maximal ideal of gives a mod representation of .

Serre's conjecture asserts that for any representation as above, there is a modular eigenform such that

.

The level and weight of the conjectural form are explicitly conjectured in Serre's article. In addition, he derives a number of results from this conjecture, among them Fermat's Last Theorem and the now-proven Taniyama–Weil (or Taniyama–Shimura) conjecture, now known as the modularity theorem (although this implies Fermat's Last Theorem, Serre proves it directly from his conjecture).

Optimal level and weight

The strong form of Serre's conjecture describes the level and weight of the modular form.

The optimal level is the Artin conductor of the representation, with the power of removed.

Proof

A proof of the level 1 and small weight cases of the conjecture was obtained in 2004 by Chandrashekhar Khare and Jean-Pierre Wintenberger,[3] and by Luis Dieulefait,[4] independently.

In 2005, Chandrashekhar Khare obtained a proof of the level 1 case of Serre conjecture,[5] and in 2008 a proof of the full conjecture in collaboration with Jean-Pierre Wintenberger.[6]

Notes

  1. ^ Khare, Chandrashekhar (2006), "Serre's modularity conjecture: The level one case", Duke Mathematical Journal, 134 (3): 557–589, doi:10.1215/S0012-7094-06-13434-8.
  2. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, Bibcode:2009InMat.178..485K, CiteSeerX 10.1.1.518.4611, doi:10.1007/s00222-009-0205-7 and Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, Bibcode:2009InMat.178..505K, CiteSeerX 10.1.1.228.8022, doi:10.1007/s00222-009-0206-6.
  3. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "On Serre's reciprocity conjecture for 2-dimensional mod p representations of Gal(Q/Q)", Annals of Mathematics, 169 (1): 229–253, doi:10.4007/annals.2009.169.229.
  4. ^ Dieulefait, Luis (2007), "The level 1 weight 2 case of Serre's conjecture", Revista Matemática Iberoamericana, 23 (3): 1115–1124, arXiv:math/0412099, doi:10.4171/rmi/525.
  5. ^ Khare, Chandrashekhar (2006), "Serre's modularity conjecture: The level one case", Duke Mathematical Journal, 134 (3): 557–589, doi:10.1215/S0012-7094-06-13434-8.
  6. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, Bibcode:2009InMat.178..485K, CiteSeerX 10.1.1.518.4611, doi:10.1007/s00222-009-0205-7 and Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, Bibcode:2009InMat.178..505K, CiteSeerX 10.1.1.228.8022, doi:10.1007/s00222-009-0206-6.

References

See also

Read other articles:

2017 single by Yxng BaneRihannaSingle by Yxng BaneReleased14 August 2017GenreR&B, afroswingLength3:27LabelDisturbing LondonSongwriter(s) Gordon Egwu Guystone Menga Uzezi Oniko[1] Producer(s)Legendury Beatz[2]Yxng Bane singles chronology Diamonds (2017) Rihanna (2017) No Way (2017) Rihanna is a song by British rapper Yxng Bane. It was released as a single through Disturbing London on 14 August 2017,[3] peaking at number 40 on the UK chart.[4] The song wa...

 

HaggisHaggis yang dijual di pasarBahan utamaJeroan domba (hati, jantung, dan paru-paru) dan lambung sebagai pembungkusnya; bawang merah, oat, suet, rempah-rempahSunting kotak info • L • BBantuan penggunaan templat ini Buku resep: Haggis  Media: Haggis Haggis adalah adonan yang terbuat dari jeroan domba yang dicincang bersama dengan bawang merah, oat, suet, rempah-rempah, dan garam, yang dicampur dengan sedikit kaldu, dibungkus dengan lambung domba, lalu direbus dengan t...

 

Romanian poet and revolutionary This article is about Romanian poet Andrei Mureșianu. For the eponymous district of Cluj-Napoca, see Andrei Mureşanu, Cluj-Napoca. You can help expand this article with text translated from the corresponding article in Romanian. (February 2009) Click [show] for important translation instructions. View a machine-translated version of the Romanian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but...

Politeknik ATMI Politeknik ATMI, sebelumnya bernama: Akademi Tehnik Mesin Industri (ATMI) Surakarta adalah akademi teknik mesin yang berdiri sejak tahun 1968 di bawah naungan Yayasan Karya Bakti Surakarta berkembang menjadi institusi pendidikan tinggi yang mempunyai pengaruh cukup besar pada pendidikan profesional khususnya di bidang Teknik Mesin Industri (Teknik Manufaktur). Sejak kunjungan Menteri Pendidikan Republik Indonesia Prof. Dr. Ing. Wardiman Djojonegoro pada tahun 1995, ATMI Kota S...

 

A decision based design structure, which spans the areas of engineering design, design rationale and decision analysis Information mapping Topics and fields Business decision mapping Data visualization Graphic communication Infographics Information design Knowledge visualization Mental model Morphological analysis Ontology (information science) Schema (psychology) Visual analytics Visual language Node–link approaches Argument map Cladistics Cognitive map Concept lattice Concept map Conceptu...

 

Nucleic acid design can be used to create nucleic acid complexes with complicated secondary structures such as this four-arm junction. These four strands associate into this structure because it maximizes the number of correct base pairs, with A's matched to T's and C's matched to G's. Image from Mao, 2004.[1] Nucleic acid design is the process of generating a set of nucleic acid base sequences that will associate into a desired conformation. Nucleic acid design is central to the fiel...

Sverre Petterssen En uniforme norvégien Données clés Naissance 19 février 1898Hadsel (Norvège) Décès 31 décembre 1974 (à 76 ans)Londres (Royaume-Uni) Nationalité Norvège puis États-Unis Données clés Domaines Météorologie Institutions École de météorologie de Bergen, prévisionniste durant Seconde Guerre mondiale Diplôme Université d'Oslo Étudiants en thèse James Murdoch Austin Renommé pour Prévision météorologique du Jour J Distinctions Entre autres la Médail...

 

State historic park in Los Angeles County, California, United States This article is about the site of a mansion known as El Ranchito. For the town in Jalisco, Mexico, that is also known as El Ranchito, see San Jacintito. United States historic placePío Pico CasaU.S. National Register of Historic PlacesCalifornia Historical Landmark No. 127 The adobe and grounds after the 2000–2003 restorationLocation6003 Pioneer BlvdWhittier, CaliforniaCoordinates33°59′37″N 118°04′16″W...

 

حاكمالتسمية للأنثى ملكة فرع من حاكم تعديل - تعديل مصدري - تعديل ويكي بيانات السيادة هي اللقب الذي يمكن تطبيقه على أعلى قائد في مختلف الفئات. الكلمة الإنجليزية مستعارة من اللغة الفرنسية القديمة souverain، والتي اشتقت في النهاية من الكلمة اللاتينية superānus، والتي تعني «أعلى». تختل...

Untuk kegunaan lain, lihat Kuba (disambiguasi). Republik KubaRepública de Cuba (Spanyol) Bendera Lambang Semboyan: ¡Patria o Muerte, Venceremos!(Spanyol: Tanah air atau Mati, Kita akan Berjaya!)Lagu kebangsaan: El Himno de Bayamo(Indonesia: Lagu Bayamocode: id is deprecated )[1]Perlihatkan BumiPerlihatkan peta Bendera Ibu kota(dan kota terbesar)Havana23°8′N 82°23′W / 23.133°N 82.383°W / 23.133; -82.383Bahasa resmiSpanyolPemerintahanKesatuan ...

 

Former official head of government of the Palestinian Authority government Politics of Palestine Officeholders whose status is disputed are shown in italics Member state of the Arab League Government State of Palestine government (Ramallah) President: Mahmoud Abbasa Prime Minister: Mohammad Shtayyeh Hamas government (Gaza) National symbols Flag National anthem Coat of arms Legislative Council Palestinian National Council Palestinian Legislative Council Current members Speaker Aziz Dweik Elect...

 

Questa voce sugli argomenti dipartimenti della Francia e Bretagna è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Finistèredipartimento LocalizzazioneStato Francia Regione Bretagna AmministrazioneCapoluogoQuimper Presidente del Consiglio dipartimentaleNathalie Sarrabezolles (PS) Data di istituzione4 marzo 1790 TerritorioCoordinatedel capoluogo47°59′48″N 4°05′47″W / 47.996667°N 4.096389°W47.996667; -4.096389...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Las Plumas High School – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this message)School in Oroville, Butte, California, United StatesLas Plumas High SchoolAddress2380 Las Plumas AveSouth OrovilleOroville, Butte, Cal...

 

1936 film Love Letters of a StarTheatrical release posterDirected byMilton CarruthLewis R. FosterScreenplay byMilton CarruthLewis R. FosterJames MulhauserBased onThe Case of the Constant Godby Rufus KingProduced byCharles R. RogersStarring Henry Hunter Polly Rowles C. Henry Gordon Walter Coy Hobart Cavanaugh Mary Alice Rice Ralph Forbes CinematographyMilton KrasnerEdited byFrank GrossProductioncompanyUniversal PicturesDistributed byUniversal PicturesRelease date November 8, 1936...

 

  关于1930年成立的萨尔瓦多共产党,请见「萨尔瓦多共产党」。 共產黨 欧洲 挪威红党 挪威共产党 瑞典共产党 (1995年) 瑞典共产党 (2005年) 芬兰共产党 (1994年) 丹麦共产党 爱沙尼亚共产党 (1990年) 拉脱维亚社会党 立陶宛社会主义人民阵线 白俄罗斯共产党 白俄罗斯左翼党“公正世界” 烏克蘭共產黨 摩尔多瓦共和国共产党人党 德涅斯特河沿岸的共产党 俄罗斯联邦共产...

  هذه المقالة عن العاصمة اللبنانية. لمعانٍ أخرى، طالع بيروت (توضيح).   للمحافظة، طالع بيروت (محافظة).   بيروت بيروت  منظر عام لشبه جزيرة بيروت في يوليو 2015. بيروتعلم بيروت بيروتشعار بيروت خريطة لأبرز شوارع وأحياء بيروت. اللقب أم الشرائع، ست الدنيا، باريس الشرق ت...

 

Athletics at the2000 Summer OlympicsTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemen4 × 100 m relaymenwomen4 × 400 m relaymenwomenRoad eventsMarathonmenwomen20 km walkmenwomen50 km walkmenField eventsLong jumpmenwomenTriple jumpmenwomenHigh jumpmenwomenPole vaultmenwomenShot putmenwomenDiscus throwmenwomenJavelin throwmenwomenHammer throwmenwomenCombined e...

 

Little NemoLittle Nemo dan Sang Putri naik di dalam mulut naga.SutradaraWinsor McCayTanggal rilis 8 April 1911 (1911-04-08) Durasi11:33NegaraAmerika SerikatBahasaAntarjudul Inggris Little Nemo, juga dikenal sebagai Winsor McCay, the Famous Cartoonist of the N.Y. Herald and His Moving Comics, adalah sebuah film animasi bisu tahun 1911 karya kartunis Amerika Serikat Winsor McCay. Film ini merupakan salah satu film animasi pertama. Film ini menampilkan karakter dari komik pertama McCay yait...

Woman certified to serve as an advisor for women with questions regarding Taharat hamishpacha A yoetzet halacha (Hebrew: יועצת הלכה, plural: yoatzot; lit. Advisor in Jewish law), a controversial, recently created position, describing a Jewish woman certified to serve as an advisor to individuals with questions regarding Jewish practices relating to menstruation (known as taharat hamishpacha or family purity, also referred to as the laws of niddah), associated with the Open Orthodox m...

 

「シェイク」はこの項目へ転送されています。その他の用法については「シェイク (曖昧さ回避)」をご覧ください。 イスラム教 教義・信仰 アッラーフ · イスラーム 六信 · 五行 タウヒード · ジハード モスク · マドラサ カアバ · ハッジ 指導者 ムハンマド ハディージャ · アーイシャ アブー・バクル ウ...