Rescaled range

The rescaled range is a statistical measure of the variability of a time series introduced by the British hydrologist Harold Edwin Hurst (1880–1978).[1] Its purpose is to provide an assessment of how the apparent variability of a series changes with the length of the time-period being considered.

The rescaled range of time series is calculated from dividing the range of its mean adjusted cumulative deviate series (see § Calculation) by the standard deviation of the time series itself. For example, consider a time series {1,3,1,0,2,5}, which has a mean m = 2 and standard deviation S = 1.79. Subtracting m from each value of the series gives mean adjusted series {-1,1,-1,-2,0,3}. To calculate cumulative deviate series we take the first value -1, then sum of the first two values -1+1=0, then sum of the first three values and so on to get {-1,0,-1,-3,-3,0}, range of which is R = 3, so the rescaled range is R/S = 1.68.

If we consider the same time series, but increase the number of observations of it, the rescaled range will generally also increase. The increase of the rescaled range can be characterized by making a plot of the logarithm of R/S vs. the logarithm of the number of samples. The slope of this line gives the Hurst exponent, H. If the time series is generated by a random walk (or a Brownian motion process) it has the value of H = 1/2. Many physical phenomena that have a long time series suitable for analysis exhibit a Hurst exponent greater than 1/2. For example, observations of the height of the Nile River measured annually over many years gives a value of H = 0.77.

Several researchers (including Peters, 1991) have found that the prices of many financial instruments (such as currency exchange rates, stock values, etc.) also have H > 1/2.[2] This means that they have a behavior that is distinct from a random walk, and therefore the time series is not generated by a stochastic process that has the nth value independent of all of the values before this. According to a model[3] of Fractional Brownian motion this is referred to as long memory of positive linear autocorrelation. However it has been shown[4] that this measure is correct only for linear evaluation: complex nonlinear processes with memory need additional descriptive parameters. Several studies using Lo's[5] modified rescaled range statistic have contradicted Peters' results as well.

Calculation

The Rescaled Range is calculated for a time series, , as follows:[6]
  1. Calculate the mean
  2. Create a mean adjusted series
  3. Calculate the cumulative deviate series Z;
  4. Create a range series R;
  5. Create a standard deviation series S;
    Where m(t) is the mean for the time series values through time
  6. Calculate the rescaled range series (R/S)

Lo (1991) advocates adjusting the standard deviation for the expected increase in range resulting from short-range autocorrelation in the time series.[5] This involves replacing by , which is the square root of

where is some maximum lag over which short-range autocorrelation might be substantial and is the sample autocovariance at lag . Using this adjusted rescaled range, he concludes that stock market return time series show no evidence of long-range memory.

See also

References

  1. ^ Hurst, H. E. (1951). "Long term storage capacity of reservoirs". Trans. Am. Soc. Eng. 116: 770–799.
  2. ^ Peters, E. E. (1991). Chaos and order in the capital markets. John Wiley and Sons. ISBN 978-0-471-53372-6.
  3. ^ Mandelbrot, B. (1968). "Fractional Brownian motions, fractional noises and applications". SIAM Review. 10 (4): 422–437. Bibcode:1968SIAMR..10..422M. doi:10.1137/1010093.
  4. ^ Kamenshchikov, S. (2014). "Transport Catastrophe Analysis as an Alternative to a Monofractal Description: Theory and Application to Financial Crisis Time Series". Journal of Chaos. 2014: 1–8. doi:10.1155/2014/346743.
  5. ^ a b Lo, A. (1991). "Long-Term Memory in Stock Market Prices" (PDF). Econometrica. 59 (5): 1279–1313. doi:10.2307/2938368. hdl:1721.1/2245. JSTOR 2938368.
  6. ^ Bo Qian; Khaled Rasheed (2004). HURST EXPONENT AND FINANCIAL MARKET PREDICTABILITY. IASTED conference on "Financial Engineering and Applications"(FEA 2004). pp. 203–209. CiteSeerX 10.1.1.137.207.

Further reading

  • Hurst, H.E.; Black, R.P.; Simaika, Y.M. (1965). Long-term storage: an experimental study. London: Constable.
  • Beran, J. (1994). Statistics for Long-Memory Processes. Chapman & Hall. ISBN 978-0-412-04901-9.
  • Thiele, T. A. (2014). "Multiscaling and Stock Market Efficiency in China". Review of Pacific Basin Financial Markets and Policies. 17 (4): 1450023. doi:10.1142/S0219091514500234.

Read other articles:

  Grand Prix Amerika 2014Detail lombaLomba ke 2 dari 18Grand Prix Sepeda Motor musim 2014Tanggal13 April 2014Nama resmiRed Bull Grand Prix of the Americas[1]LokasiCircuit of the AmericasSirkuitFasilitas balapan permanen5.513 km (3.426 mi)MotoGPPole positionPembalap Marc Márquez HondaCatatan waktu 2:02.773 Putaran tercepatPembalap Marc Márquez HondaCatatan waktu 2:03.575 di lap 3 PodiumPertama Marc Márquez HondaKedua Dani Pedrosa HondaKetiga Andrea Dovizioso Duca...

 

 

Untuk kegunaan lain, lihat Siantar (disambiguasi). Siantar MarimbunKecamatanKantor Kecamatan Siantar MarimbunPeta lokasi Kecamatan Siantar MarimbunNegara IndonesiaProvinsiSumatera UtaraKotaPematangsiantarPemerintahan • CamatFidelis Sembiring, SSTP, MSiPopulasi • Total- jiwa jiwaKode Kemendagri12.72.08 Kode BPS1273011 Luas- km²Desa/kelurahan6 Siantar Marimbun adalah sebuah kecamatan di Kota Pematangsiantar, Sumatera Utara, Indonesia. Administratif Pembagian Wilaya...

 

 

United States historic placeRivoli TheatreU.S. National Register of Historic Places West elevation and north profile of front block, 2008Show map of New YorkShow map of the United StatesLocationSouth Fallsburg, NYNearest cityMiddletownCoordinates41°41′56″N 74°38′15″W / 41.69889°N 74.63750°W / 41.69889; -74.63750Arealess than one acreBuilt1923[2]ArchitectEmil Motel[2]Architectural styleLate 19th And 20th Century RevivalsNRHP referen...

Village in Silesian Voivodeship, PolandWyryVillageSacred Heart church in WyryWyryCoordinates: 50°8′N 18°55′E / 50.133°N 18.917°E / 50.133; 18.917Country PolandVoivodeshipSilesianCountyMikołówGminaWyryFirst mentioned1287Population6,400Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST) Wyry ([ˈvɨrɨ]) (German: Wyrow) is a village in Mikołów County, Silesian Voivodeship, in southern Poland. It is the seat of the gmina (administrative district) calle...

 

 

Hot 100 beralih ke halaman ini. Untuk kegunaan lain, lihat Hot 100 (disambiguasi). Peringatan: Menampilkan judul <i>Billboard Hot 100</i> menimpa judul tampilan <i>Billboard</i> Hot 100 sebelumnya. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Billboard Hot...

 

 

PausYohanes VIII dari AleksandriaPaus Aleksandria ke-80 & Patriarkh Tahta St. MarkusAwal masa jabatan14 Desember 1300Masa jabatan berakhir29 Mei 1320PendahuluTheodosius IIIPenerusJohn IXInformasi pribadiNama lahirYohanna Ben-EbsalLahirBani-Khosaim, MesirWafat29 Mei 1320MesirMakamMonatri ShahranKewarganegaraanMesirDenominasiKristen Ortodoks KoptikKediamanGereja Santo Merkurius di Koptik Kairo Paus Yohanes VIII dari Aleksandria adalah Paus Aleksandria ke-80 & Patriarkh Tahta St. Markus....

يوزف أنتوني بونياتوفسكي (بالبولندية: Józef Antoni Poniatowski)‏    معلومات شخصية الميلاد 7 مايو 1763 [1][2][3][4]  فيينا[5]  الوفاة 19 أكتوبر 1813 (50 سنة) [1][2][3]  لايبزيغ  سبب الوفاة غرق  مواطنة فرنسا الكومنولث البولندي الليتواني  الحياة العمل�...

 

 

Elizabeth Christ TrumpLahirElisabeth Christ(1880-10-10)10 Oktober 1880Kallstadt, Kerajaan Bayern, Kekaisaran JermanMeninggal6 Juni 1966(1966-06-06) (umur 85)Manhasset, New York, A.S.KebangsaanJermanWarga negaraAmerika SerikatPekerjaanPengembang propertiSuami/istriFrederick Trump ​ ​(m. 1902; meninggal 1918)​AnakElizabeth, Fred, dan JohnOrang tuaPhilipp Christ, Anna Maria Anthon[1] Elizabeth Christ Trump (lahir Elisabeth Christ; 10 ...

 

 

French opera singer and actress Nesville by the Atelier Nadar Juliette Nesville was the stage name of Juliette-Hortense Lesne (30 July 1869 – 26 July 1900), a French singer and actress in operetta and musicals, who made most of her short career in London, after early success in Paris and Brussels. After training at the Paris Conservatoire Nesville appeared in opéras comiques by Paul Lacôme, Robert Planquette, Edmond Audran and Charles Lecocq in 1890. After a highly successful appearance i...

Carlo Stefano Anastasio Cicericardinale di Santa Romana ChiesaRitratto del cardinale Ciceri  Incarichi ricoperti Vescovo di Alessandria (1659-1680) Vescovo di Como (1680-1694) Cardinale presbitero di Sant'Agostino (1687-1694)  Nato26 dicembre 1618 a Como Ordinato presbiteroin data sconosciuta Nominato vescovo22 settembre 1659 da papa Alessandro VII Consacrato vescovo5 ottobre 1659 dal cardinale Benedetto Odescalchi (poi papa) Creato cardinale2 settembre 1686 da papa Innocenzo XI Dec...

 

 

Uncontrollably FondGenreRomansa MelodramaDitulis olehLee Kyung-heeSutradaraPark Hyun-sukPemeranKim Woo-bin Bae SuzyNegara asalKorea SelatanBahasa asliKoreaJmlh. episode20ProduksiLokasi produksiKorea SelatanDurasiRabu dan Kamis pukul 21:55 (WSK)Rumah produksiSamhwa NetworksiHQRilis asliRilis06 Juli (2016-07-06) –8 September 2016 (2016-9-8) Uncontrollably Fond (Hangul: 함부로 애틋하게; RR: Hamburo aeteuthage) adalah serial televisi Korea Selatan ya...

 

 

Lambang Komunitas Fruitbearing Komunitas Fruitbearing (Jerman: Die Fruchtbringende Gesellschaft Inggris: Fruitbearing Society, Latin: societas fructifera) adalah sebuah komunitas sastra di Jerman yang didirikan pada 1617 di Weimar oleh para cendekiawan dan bangsawan di Jerman. Tujuan dari organisasi ini adalah membakukan dan menyebarluaskan penggunaan bahasa Jerman dalam jurnal-jurnal ilmiah dan karya sastra. Organisasi yang sejenis adalah Accademia della Crusca di Florence dan beberapa yang ...

Watson governmentIn office27 April 1904 – 18 August 1904MonarchEdward VIIPrime MinisterChris WatsonPartyLaborStatusMinority (Protectionist support)OriginPredecessor lost confidence motionDemiseLost confidence motionPredecessorDeakin government (I)SuccessorReid government The Watson government was the third federal executive government of the Commonwealth of Australia. It was led by Prime Minister Chris Watson of the Australian Labor Party from 27 April 1904 to 18 August 1904. The Wats...

 

 

Canadian politician George Anthony WalkemHon. George Anthony Walkem in 18753rd & 5th Premier of British ColumbiaIn officeFebruary 11, 1874 – January 27, 1876MonarchVictoriaLieutenant GovernorJoseph TrutchPreceded byAmor de CosmosSucceeded byAndrew Charles ElliottIn officeJune 25, 1878 – June 6, 1882MonarchVictoriaLieutenant GovernorAlbert Norton RichardsClement Francis CornwallPreceded byAndrew Charles ElliottSucceeded byRobert BeavenMLA for CaribooIn officeOctob...

 

 

Ali Fethi Okyar Ali Fethi Okyar (29 April 1880 – 7 Mei 1943) ialah seorang tentara dan politikus Turki Utsmani. Merupakan kepala penjaga Sultan Abd-ul-Hamid II di pengasingannya di Salonika. Kemudian menjadi utusan Kesultanan Utsmaniyah ke Sofia, Bulgaria. Kemudian ia bekerja sebagai Ketua Majelis Perwakilan yang didirikan Mustafa Kemal Atatürk, dan perdana menteri pada masa Republik. Didahului oleh:İsmet İnönü Perdana Menteri Turki Digantikan oleh:Ismet Inonu lbsPerdana ...

Forced prostitution and forced labor Projection map of Georgia highlighting the disputed territories of Abkhazia and South Ossetia Human trafficking in Georgia is common, with people being subjected to forced prostitution and forced labor. In 2009, women and girls from Georgia were forced into prostitution in Georgia, Turkey, the United Arab Emirates, and Greece, and in recent years, cases of forced prostitution of Georgian victims have also been documented in Russia, Germany, and Austria. Me...

 

 

Wilderness area of the Strawberry Mountain Range in east Oregon Strawberry Mountain WildernessIUCN category Ib (wilderness area)Strawberry LakeLocationGrant County, Oregon, United StatesNearest cityCanyon City and Prairie CityCoordinates44°18′10″N 118°47′36″W / 44.30278°N 118.79333°W / 44.30278; -118.79333Area69,350 acres (28,060 ha)Established1964Governing bodyUnited States Forest Service Strawberry Mountain Wilderness is a wilderness area o...

 

 

Governing body in the US department of Justice United States Department of JusticeTax DivisionSeal of the United States Department of JusticeDivision overviewFormed1934; 90 years ago (1934)JurisdictionFederal government of the United StatesHeadquartersRobert F. Kennedy Department of Justice Building950 Pennsylvania Avenue NWWashington, D.C., United StatesDivision executiveDavid A. Hubbert, Acting Assistant Attorney GeneralParent departmentU.S. Department of JusticeWebsiteOf...

Insolvency Processes Administration Bankruptcy Chapter 7 (US) CVA Conservatorship Dissolution Examinership IVA Liquidation Provisional liquidation Receivership Officials Insolvency practitioner Tribunal Regulatory agency Liquidator Referee in Bankruptcy Trustee in bankruptcy Claimants Creditor Preferential creditor Secured creditor Unsecured creditor Restructuring Administration (UK) Chapter 11 (US) Cram down Restructuring Scheme of arrangement Avoidance regimes Fraudulent conveyance Underval...

 

 

Multi-purpose stadium in Milton, Queensland, Australia For the venue known as Brisbane Stadium between 1910 and 1958, see Brisbane Festival Hall. Suncorp StadiumLang ParkStadiums Queensland Rating:[1]Former namesLang Park Suncorp-Metway StadiumLocation40 Castlemaine Street, Milton, Queensland, AustraliaCoordinates27°27′53″S 153°0′34″E / 27.46472°S 153.00944°E / -27.46472; 153.00944OperatorASM GlobalCapacity52,500[4]Record attendance59,185 (2...