Dedekind eta function

Dedekind η-function in the upper half-plane

In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory.

Definition

For any complex number τ with Im(τ) > 0, let q = e2πiτ; then the eta function is defined by,

Raising the eta equation to the 24th power and multiplying by (2π)12 gives

where Δ is the modular discriminant. The presence of 24 can be understood by connection with other occurrences, such as in the 24-dimensional Leech lattice.

The eta function is holomorphic on the upper half-plane but cannot be continued analytically beyond it.

Modulus of Euler phi on the unit disc, colored so that black = 0, red = 4
The real part of the modular discriminant as a function of q.

The eta function satisfies the functional equations[1]

In the second equation the branch of the square root is chosen such that = 1 when τ = i.

More generally, suppose a, b, c, d are integers with adbc = 1, so that

is a transformation belonging to the modular group. We may assume that either c > 0, or c = 0 and d = 1. Then

where

Here s(h,k) is the Dedekind sum

Because of these functional equations the eta function is a modular form of weight 1/2 and level 1 for a certain character of order 24 of the metaplectic double cover of the modular group, and can be used to define other modular forms. In particular the modular discriminant of Weierstrass with

can be defined as

and is a modular form of weight 12. Some authors omit the factor of (2π)12, so that the series expansion has integral coefficients.

The Jacobi triple product implies that the eta is (up to a factor) a Jacobi theta function for special values of the arguments:[2]

where χ(n) is "the" Dirichlet character modulo 12 with χ(±1) = 1 and χ(±5) = −1. Explicitly,[citation needed]

The Euler function

has a power series by the Euler identity:

Note that by using Euler Pentagonal number theorem for , the eta function can be expressed as

This can be proved by using in Euler Pentagonal number theorem with the definition of eta function.

Because the eta function is easy to compute numerically from either power series, it is often helpful in computation to express other functions in terms of it when possible, and products and quotients of eta functions, called eta quotients, can be used to express a great variety of modular forms.

The picture on this page shows the modulus of the Euler function: the additional factor of q1/24 between this and eta makes almost no visual difference whatsoever. Thus, this picture can be taken as a picture of eta as a function of q.

Combinatorial identities

The theory of the algebraic characters of the affine Lie algebras gives rise to a large class of previously unknown identities for the eta function. These identities follow from the Weyl–Kac character formula, and more specifically from the so-called "denominator identities". The characters themselves allow the construction of generalizations of the Jacobi theta function which transform under the modular group; this is what leads to the identities. An example of one such new identity[3] is

where q = e2πiτ is the q-analog or "deformation" of the highest weight of a module.

Special values

From the above connection with the Euler function together with the special values of the latter, it can be easily deduced that

Eta quotients

Eta quotients are defined by quotients of the form

where d is a non-negative integer and rd is any integer. Linear combinations of eta quotients at imaginary quadratic arguments may be algebraic, while combinations of eta quotients may even be integral. For example, define,

with the 24th power of the Weber modular function 𝔣(τ). Then,

and so on, values which appear in Ramanujan–Sato series.

Eta quotients may also be a useful tool for describing bases of modular forms, which are notoriously difficult to compute and express directly. In 1993 Basil Gordon and Kim Hughes proved that if an eta quotient ηg of the form given above, namely satisfies

then ηg is a weight k modular form for the congruence subgroup Γ0(N) (up to holomorphicity) where[4]

This result was extended in 2019 such that the converse holds for cases when N is coprime to 6, and it remains open that the original theorem is sharp for all integers N.[5] This also extends to state that any modular eta quotient for any level n congruence subgroup must also be a modular form for the group Γ(N). While these theorems characterize modular eta quotients, the condition of holomorphicity must be checked separately using a theorem that emerged from the work of Gérard Ligozat[6] and Yves Martin:[7]

If ηg is an eta quotient satisfying the above conditions for the integer N and c and d are coprime integers, then the order of vanishing at the cusp c/d relative to Γ0(N) is

These theorems provide an effective means of creating holomorphic modular eta quotients, however this may not be sufficient to construct a basis for a vector space of modular forms and cusp forms. A useful theorem for limiting the number of modular eta quotients to consider states that a holomorphic weight k modular eta quotient on Γ0(N) must satisfy

where ordp(N) denotes the largest integer m such that pm divides N.[8] These results lead to several characterizations of spaces of modular forms that can be spanned by modular eta quotients.[8] Using the graded ring structure on the ring of modular forms, we can compute bases of vector spaces of modular forms composed of -linear combinations of eta-quotients. For example, if we assume N = pq is a semiprime then the following process can be used to compute an eta-quotient basis of Mk0(N)).[5]

  1. Fix a semiprime N = pq which is coprime to 6 (that is, p, q > 3). We know that any modular eta quotient may be found using the above theorems, therefore it is reasonable to algorithmically to compute them.
  2. Compute the dimension D of Mk0(N)). This tells us how many linearly-independent modular eta quotients we will need to compute to form a basis.
  3. Reduce the number of eta quotients to consider. For semiprimes we can reduce the number of partitions using the bound on

    and by noticing that the sum of the orders of vanishing at the cusps of Γ0(N) must equal

    .[5]
  4. Find all partitions of S into 4-tuples (there are 4 cusps of Γ0(N)), and among these consider only the partitions which satisfy Gordon and Hughes' conditions (we can convert orders of vanishing into exponents). Each of these partitions corresponds to a unique eta quotient.
  5. Determine the minimum number of terms in the q-expansion of each eta quotient required to identify elements uniquely (this uses a result known as Sturm's bound). Then use linear algebra to determine a maximal independent set among these eta quotients.
  6. Assuming that we have not already found D linearly independent eta quotients, find an appropriate vector space Mk0(N)) such that k and Mk0(N)) is spanned by (weakly holomorphic) eta quotients,[8] and Mkk0(N)) contains an eta quotient ηg.
  7. Take a modular form f with weight k that is not in the span of our computed eta quotients, and compute f ηg as a linear combination of eta-quotients in Mk0(N)) and then divide out by ηg. The result will be an expression of f as a linear combination of eta quotients as desired. Repeat this until a basis is formed.

A collection of over 6300 product identities for the Dedekind Eta Function in a canonical, standardized form is available at the Wayback machine[9] of Michael Somos' website.

See also

References

  1. ^ Siegel, C. L. (1954). "A Simple Proof of η(−1/τ) = η(τ)τ/i". Mathematika. 1: 4. doi:10.1112/S0025579300000462.
  2. ^ Bump, Daniel (1998), Automorphic Forms and Representations, Cambridge University Press, ISBN 0-521-55098-X
  3. ^ Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press, ISBN 0-521-48412-X
  4. ^ Gordon, Basil; Hughes, Kim (1993). "Multiplicative properties of η-products. II.". A Tribute to Emil Grosswald: Number Theory and Related Analysis. Contemporary Mathematics. Vol. 143. Providence, RI: American Mathematical Society. p. 415–430.
  5. ^ a b c Allen, Michael; Anderson, Nicholas; Hamakiotes, Asimina; Oltsik, Ben; Swisher, Holly (2020). "Eta-quotients of prime or semiprime level and elliptic curves". Involve. 13 (5): 879–900. arXiv:1901.10511. doi:10.2140/involve.2020.13.879. S2CID 119620241.
  6. ^ Ligozat, G. (1974). Courbes modulaires de genre 1. Publications Mathématiques d'Orsay. Vol. 75. U.E.R. Mathématique, Université Paris XI, Orsay. p. 7411.
  7. ^ Martin, Yves (1996). "Multiplicative η-quotients". Transactions of the American Mathematical Society. 348 (12): 4825–4856. doi:10.1090/S0002-9947-96-01743-6.
  8. ^ a b c Rouse, Jeremy; Webb, John J. (2015). "On spaces of modular forms spanned by eta-quotients". Advances in Mathematics. 272: 200–224. arXiv:1311.1460. doi:10.1016/j.aim.2014.12.002.
  9. ^ "Dedekind Eta Function Product Identities by Michael Somos". Archived from the original on 2019-07-09.

Further reading

Read other articles:

Lam RèhLamri800–1503Ibu kotaLamrehAgama Hindu, Islam (abad ke-14/15)[1]Sejarah • Didirikan 800• Kemunculan Aceh 1503 Digantikan oleh Aceh Sunting kotak info • Lihat • BicaraBantuan penggunaan templat ini Lamri adalah nama sebuah kerajaan yang terletak di daerah kabupaten Aceh Besar dengan pusatnya di Lam Reh, kecamatan Mesjid Raya. Kerajaan ini adalah kerajaan yang lebih dahulu muncul sebelum berdirinya Aceh Darussalam. Sumber asing menyebut nama ke...

 

 

Jherson Vergara Jherson Vergara bersama FC Arsenal Tula dalam pertandingan melawan FC Krasnodar. 2017Informasi pribadiNama lengkap Jherson Vergara AmúTanggal lahir 26 Mei 1994 (umur 29)Tempat lahir Florida, ColombiaTinggi 1,90 m (6 ft 3 in) [1]Posisi bermain BekInformasi klubKlub saat ini Avellino (pinjaman dari Milan)Nomor 17Karier junior2009–2011 Boca Juniors de CaliKarier senior*Tahun Tim Tampil (Gol)2011–2013 Deportes Quindío 5 (0)2011–2013 → Univers...

 

 

Bus station in Los Angeles Union Station Union StationPatsaouras Transit Plaza       The transit plaza and Union Station east portalGeneral informationLocation801 North Vignes StreetLos Angeles, CaliforniaUnited StatesCoordinates34°03′19″N 118°13′59″W / 34.05528°N 118.23306°W / 34.05528; -118.23306Owned byLos Angeles County Metropolitan Transportation AuthorityPlatforms2 multi-bay island platformsBus stands15ConnectionsUnion StationConst...

Antoingt Église Saint-Gal. Blason Administration Pays France Région Auvergne-Rhône-Alpes Département Puy-de-Dôme Arrondissement Issoire Intercommunalité Agglo Pays d'Issoire Maire Mandat Emmanuel Gonthier 2020-2026 Code postal 63340 Code commune 63005 Démographie Gentilé Antoinais[1] Populationmunicipale 419 hab. (2021 ) Densité 54 hab./km2 Géographie Coordonnées 45° 29′ 48″ nord, 3° 10′ 46″ est Altitude Min. 437 mMax. 610...

 

 

Halaman ini berisi artikel tentang perangkat lunak grafis API. Untuk kegunaan lain, lihat Vulkan (disambiguasi). Vulkan TipeAntarmuka pemrograman aplikasi dan perangkat lunak BerdasarkaMantle Versi pertama16 Februari 2016; 8 tahun lalu (2016-02-16)[1]Versi stabil 1.3.283 (19 April 2024) GenreGrafis dan komputasi 3D API[2]LisensiApache License 2.0[3]Karakteristik teknisSistem operasiAndroid, Linux, Fuchsia, BSD Unix,[4] QNX,[5] Windows, Nintendo Swi...

 

 

2012 single by Rick Ross featuring UsherTouch'N YouSingle by Rick Ross featuring Usherfrom the album God Forgives, I Don't ReleasedMay 22, 2012Recorded2011GenreHip hopsouthern hip hopR&BLength4:12LabelMaybach Music GroupDef JamWarner Bros. RecordsSongwriter(s)Richard Butler, Jr.Pierre MedorRoberts IIUsher Raymond IVProducer(s)Rico LovePierre MedorRick Ross singles chronology Born Stunna (2012) Touch'N You (2012) So Sophisticated (2012) Usher singles chronology Lemme See(2012) Touc...

Louis Le PrinceLahirLouis Aimé Augustin Le Prince(1841-08-28)28 Agustus 1841Metz, PrancisMenghilang16 September 1890 (pada umur 49 tahun)Dijon, PrancisStatusDinyatakan meninggalPekerjaanKimiawan, insinyur, penemu, pembuat filmSuami/istriElizabeth Le Prince-Whitley ​ ​(m. 1869⁠–⁠Kesalahan ekspresi: Operator < tak terduga)​ Untuk komposer, lihat Louis Le Prince (komposer). Louis Aimé Augustin Le Prince (28 Agustus 1841 – menghi...

 

 

Ignazio Silone Secondino Tranquilli (Pescina, 1 Mei 1900 – Jenewa, 22 Agustus 1978), dikenal dengan nama samaran Ignazio Silone (/sɪˈloʊni/, bahasa Italia: [iɲˈɲattsjo siˈloːne]), merupakan pemimpin politik Italia, novelis, dan penulis cerita pendek, terkenal di dunia selama Perang Dunia II dengan novel anti fasisnya. Dia meraih Penghargaan Nobel Kesusastraan sepuluh kali,[1][2] Penghargaan Yerusalem pada 1969 dan Prix mondial Cino Del Duca pada 1971. Ignazio Si...

 

 

Voce principale: Coppa delle nazioni africane 2012. Elenco dei giocatori convocati da ciascuna nazionale partecipante alla Coppa delle nazioni africane 2012. L'età dei giocatori riportata è relativa al 21 gennaio, data di inizio della manifestazione. Indice 1 Gruppo A 1.1 Guinea Equatoriale 1.2 Libia 1.3 Senegal 1.4 Zambia 2 Gruppo B 2.1 Costa d'Avorio 2.2 Sudan 2.3 Burkina Faso 2.4 Angola 3 Gruppo C 3.1 Gabon 3.2 Niger 3.3 Marocco 3.4 Tunisia 4 Gruppo D 4.1 Ghana 4.2 Botswana 4.3 Mali 4.4...

銮披汶·頌堪แปลก พิบูลสงคราม第3任泰國總理任期1938年12月16日—1944年8月1日君主國王拉玛八世前任披耶帕凤侯爵继任寬·阿派旺第8任泰國總理任期1948年4月8日—1957年9月16日君主國王拉玛九世前任寬·阿派旺继任乃朴·沙拉信 个人资料出生貝·基達桑卡(1897-07-14)1897年7月14日 暹罗暖武里府逝世1964年6月11日(1964歲—06—11)(66歲) 日本神奈川縣相模原市国籍&#...

 

 

Tech school in Clayton, Victoria, AustraliaMonash Tech SchoolAddressLevel 1, 29 Ancora Imparo Way, Monash UniversityClayton, Victoria, 3800AustraliaCoordinates37°54′50.7″S 145°08′0.27″E / 37.914083°S 145.1334083°E / -37.914083; 145.1334083InformationTypeTech SchoolMottoDesign your future nowEstablished2017DirectorNeil Carmona-VickeryStaff11Years7–12AffiliationsMonash UniversityWebsitewww.monashtechschool.vic.edu.au Monash Tech School is one of ten Tech S...

 

 

رافاييل نافارو   معلومات شخصية الميلاد 14 أبريل 2000 (24 سنة)[1]  كابو فريو  الطول 1.83 م (6 قدم 0 بوصة) مركز اللعب مهاجم الجنسية البرازيل  معلومات النادي النادي الحالي بالميراس الرقم 29 مسيرة الشباب سنوات فريق 0000–2017 فلومينينسي 2018–2019 أتلتيكو غويانيينسي المسير�...

Questa voce o sezione sull'argomento DC Comics non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Smallville Miniseriesfumetto Il logo della miniserie è il medesimo di Smallville Season 11 e della serie televisiva Smallville Lingua orig.inglese PaeseStati Uniti EditoreDC Comics 1ª edizione2014 – 2015 Periodicitàperiodico (2013...

 

 

American sociologist Monica PrasadPrasad in 2011OccupationProfessor of SociologyAcademic backgroundAlma materUniversity of ChicagoAcademic workDisciplineSociologistSub-disciplinePolitical sociology, economic sociology, comparative sociologyInstitutionsNorthwestern University Monica Prasad is an American sociologist who has won several awards for her books on economic and political sociology. Prasad is Professor of Sociology at Northwestern University and a 2015 Guggenheim fellow. Her research...

 

 

South Korean weightlifter (1929–2017) Kim Hae-namPersonal informationNationalitySouth KoreanBorn(1929-05-23)23 May 1929Pyeonganbuk, KoreaDied29 July 2017Germantown, Maryland, USASportSportWeightlifting Kim Hae-nam (23 May 1929 – 29 July 2017[citation needed]) was a South Korean former weightlifter. He competed at the 1952, 1956, 1960 and the 1964 Summer Olympics.[1] References ^ Evans, Hilary; Gjerde, Arild; Heijmans, Jeroen; Mallon, Bill; et al. Kim Hae-nam Olym...

Villa Rocca Matilde sulla costa di Posillipo Villa Elisa (via Posillipo 45) Per ville di Napoli si intendono qui soprattutto le dimore signorili costruite dal Rinascimento aragonese alla Belle Époque. Esse costituiscono un inestimabile patrimonio di stili architettonici, arte e cultura. Per le ville dei dintorni e della campagna vedere ville della Campania. Indice 1 Storia 2 Le ville rinascimentali nella Napoli aragonese e nel Cinquecento 3 Posillipo: i fasti del Seicento e dell'Ottocento 4 ...

 

 

Wrestling competition 2021 EuropeanWrestling ChampionshipsFreestyleGreco-RomanWomen57 kg55 kg50 kg61 kg60 kg53 kg65 kg63 kg55 kg70 kg67 kg57 kg74 kg72 kg59 kg79 kg77 kg62 kg86 kg82 kg65 kg92 kg87 kg68 kg97 kg97 kg72 kg125 kg130 kg76 kgvte Main article: 2021 European Wrestling Championships The men's freestyle 92 kg is a competition featured at the 2021 European Wrestling Championships, and was held in Warsaw, Poland on April 20 and April 21.[1][2][3] Medalists Gol...

 

 

إدي تيرنبول معلومات شخصية الميلاد 12 أبريل 1923(1923-04-12)فلكرك  الوفاة 30 أبريل 2011 (عن عمر ناهز 88 عاماً)إدنبرة[1]  الطول 5 قدم 10 بوصة (1.78 م) مركز اللعب مهاجم الجنسية المملكة المتحدة المملكة المتحدة لبريطانيا العظمى وأيرلندا (–12 أبريل 1927)  المسيرة الاحترافية1 سن...

Pour les articles homonymes, voir Palenque. Cité préhispanique et parc national de Palenque *  Patrimoine mondial de l'UNESCO Coordonnées 17° 29′ 02″ nord, 92° 02′ 46″ ouest Pays Mexique Subdivision État du Chiapas Type Culturel Critères (i) (ii) (iii) (iv) Numérod’identification 411 Région Amérique latine et Caraïbes ** Année d’inscription 1987 (11e session) Géolocalisation sur la carte : Mexique Cité préhispaniqu...

 

 

A

Este artículo trata sobre la letra latina. Para otros usos de este término, véase A (desambiguación). A AaSonido /a/Unicode U+0041, U+0061HistoriaOrigen 𐤀ΑαAaDescendientes Á À Ă Â Ǎ Å Ä Ã Ȧ Ǡ Ą Ā Ā̀ Ả Ȁ A̋ Ȃ Ạ Ḁ Ⱥ ᶏ ẚAlfabeto español A a B b C c D d E e F f G g H h I i J j K k L l M m N n Ñ ñ O o P p Q q R r S s T t U u V v W w X ...