The Pythagoreans dealt with the regular solids, but the pyramid, prism, cone and cylinder were not studied until the Platonists. Eudoxus established their measurement, proving the pyramid and cone to have one-third the volume of a prism and cylinder on the same base and of the same height. He was probably also the discoverer of a proof that the volume enclosed by a sphere is proportional to the cube of its radius.[3]
Topics
Basic topics in solid geometry and stereometry include:
Whereas a sphere is the surface of a ball, for other solid figures it is sometimes ambiguous whether the term refers to the surface of the figure or the volume enclosed therein, notably for a cylinder.
Major types of shapes that either constitute or define a volume.
Some sources also require that each of the faces is a rectangle (so each pair of adjacent faces meets in a right angle). This more restrictive type of cuboid is also known as a rectangular cuboid, right cuboid, rectangular box, rectangular hexahedron, right rectangular prism, or rectangular parallelepiped.[5]
Various techniques and tools are used in solid geometry. Among them, analytic geometry and vector techniques have a major impact by allowing the systematic use of linear equations and matrix algebra, which are important for higher dimensions.
Applications
A major application of solid geometry and stereometry is in 3D computer graphics.