Volume

Volume
A measuring cup can be used to measure volumes of liquids. This cup measures volume in units of cups, fluid ounces, and millilitres.
Common symbols
V
SI unitcubic metre
Other units
Litre, fluid ounce, gallon, quart, pint, tsp, fluid dram, in3, yd3, barrel
In SI base unitsm3
Extensive?yes
Intensive?no
Conserved?yes for solids and liquids, no for gases, and plasma[a]
Behaviour under
coord transformation
conserved
DimensionL3

Volume is a measure of regions in three-dimensional space.[1] It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The definition of length and height (cubed) is interrelated with volume. The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces. By metonymy, the term "volume" sometimes is used to refer to the corresponding region (e.g., bounding volume).[2][3]

In ancient times, volume was measured using similar-shaped natural containers. Later on, standardized containers were used. Some simple three-dimensional shapes can have their volume easily calculated using arithmetic formulas. Volumes of more complicated shapes can be calculated with integral calculus if a formula exists for the shape's boundary. Zero-, one- and two-dimensional objects have no volume; in four and higher dimensions, an analogous concept to the normal volume is the hypervolume.

History

Ancient history

6 volumetric measures from the mens ponderia in Pompeii, an ancient municipal institution for the control of weights and measures

The precision of volume measurements in the ancient period usually ranges between 10–50 mL (0.3–2 US fl oz; 0.4–2 imp fl oz).[4]: 8  The earliest evidence of volume calculation came from ancient Egypt and Mesopotamia as mathematical problems, approximating volume of simple shapes such as cuboids, cylinders, frustum and cones. These math problems have been written in the Moscow Mathematical Papyrus (c. 1820 BCE).[5]: 403  In the Reisner Papyrus, ancient Egyptians have written concrete units of volume for grain and liquids, as well as a table of length, width, depth, and volume for blocks of material.[4]: 116  The Egyptians use their units of length (the cubit, palm, digit) to devise their units of volume, such as the volume cubit[4]: 117  or deny[5]: 396  (1 cubit × 1 cubit × 1 cubit), volume palm (1 cubit × 1 cubit × 1 palm), and volume digit (1 cubit × 1 cubit × 1 digit).[4]: 117 

The last three books of Euclid's Elements, written in around 300 BCE, detailed the exact formulas for calculating the volume of parallelepipeds, cones, pyramids, cylinders, and spheres. The formula were determined by prior mathematicians by using a primitive form of integration, by breaking the shapes into smaller and simpler pieces.[5]: 403  A century later, Archimedes (c. 287 – 212 BCE) devised approximate volume formula of several shapes using the method of exhaustion approach, meaning to derive solutions from previous known formulas from similar shapes. Primitive integration of shapes was also discovered independently by Liu Hui in the 3rd century CE, Zu Chongzhi in the 5th century CE, the Middle East and India.[5]: 404 

Archimedes also devised a way to calculate the volume of an irregular object, by submerging it underwater and measure the difference between the initial and final water volume. The water volume difference is the volume of the object.[5]: 404  Though highly popularized, Archimedes probably does not submerge the golden crown to find its volume, and thus its density and purity, due to the extreme precision involved.[6] Instead, he likely have devised a primitive form of a hydrostatic balance. Here, the crown and a chunk of pure gold with a similar weight are put on both ends of a weighing scale submerged underwater, which will tip accordingly due to the Archimedes' principle.[7]

Calculus and standardization of units

Pouring liquid to a marked flask
Diagram showing how to measure volume using a graduated cylinder with fluid dram markings, 1926

In the Middle Ages, many units for measuring volume were made, such as the sester, amber, coomb, and seam. The sheer quantity of such units motivated British kings to standardize them, culminated in the Assize of Bread and Ale statute in 1258 by Henry III of England. The statute standardized weight, length and volume as well as introduced the peny, ounce, pound, gallon and bushel.[4]: 73–74  In 1618, the London Pharmacopoeia (medicine compound catalog) adopted the Roman gallon[8] or congius[9] as a basic unit of volume and gave a conversion table to the apothecaries' units of weight.[8] Around this time, volume measurements are becoming more precise and the uncertainty is narrowed to between 1–5 mL (0.03–0.2 US fl oz; 0.04–0.2 imp fl oz).[4]: 8 

Around the early 17th century, Bonaventura Cavalieri applied the philosophy of modern integral calculus to calculate the volume of any object. He devised Cavalieri's principle, which said that using thinner and thinner slices of the shape would make the resulting volume more and more accurate. This idea would then be later expanded by Pierre de Fermat, John Wallis, Isaac Barrow, James Gregory, Isaac Newton, Gottfried Wilhelm Leibniz and Maria Gaetana Agnesi in the 17th and 18th centuries to form the modern integral calculus, which remains in use in the 21st century.[5]: 404 

Metrication and redefinitions

On 7 April 1795, the metric system was formally defined in French law using six units. Three of these are related to volume: the stère (1 m3) for volume of firewood; the litre (1 dm3) for volumes of liquid; and the gramme, for mass—defined as the mass of one cubic centimetre of water at the temperature of melting ice.[10] Thirty years later in 1824, the imperial gallon was defined to be the volume occupied by ten pounds of water at 17 °C (62 °F).[5]: 394  This definition was further refined until the United Kingdom's Weights and Measures Act 1985, which makes 1 imperial gallon precisely equal to 4.54609 litres with no use of water.[11]

The 1960 redefinition of the metre from the International Prototype Metre to the orange-red emission line of krypton-86 atoms unbounded the metre, cubic metre, and litre from physical objects. This also make the metre and metre-derived units of volume resilient to changes to the International Prototype Metre.[12] The definition of the metre was redefined again in 1983 to use the speed of light and second (which is derived from the caesium standard) and reworded for clarity in 2019.[13]

Properties

As a measure of the Euclidean three-dimensional space, volume cannot be physically measured as a negative value, similar to length and area. Like all continuous monotonic (order-preserving) measures, volumes of bodies can be compared against each other and thus can be ordered. Volume can also be added together and be decomposed indefinitely; the latter property is integral to Cavalieri's principle and to the infinitesimal calculus of three-dimensional bodies.[14] A 'unit' of infinitesimally small volume in integral calculus is the volume element; this formulation is useful when working with different coordinate systems, spaces and manifolds.

Measurement

The oldest way to roughly measure a volume of an object is using the human body, such as using hand size and pinches. However, the human body's variations make it extremely unreliable. A better way to measure volume is to use roughly consistent and durable containers found in nature, such as gourds, sheep or pig stomachs, and bladders. Later on, as metallurgy and glass production improved, small volumes nowadays are usually measured using standardized human-made containers.[5]: 393  This method is common for measuring small volume of fluids or granular materials, by using a multiple or fraction of the container. For granular materials, the container is shaken or leveled off to form a roughly flat surface. This method is not the most accurate way to measure volume but is often used to measure cooking ingredients.[5]: 399 

Air displacement pipette is used in biology and biochemistry to measure volume of fluids at the microscopic scale.[15] Calibrated measuring cups and spoons are adequate for cooking and daily life applications, however, they are not precise enough for laboratories. There, volume of liquids is measured using graduated cylinders, pipettes and volumetric flasks. The largest of such calibrated containers are petroleum storage tanks, some can hold up to 1,000,000 bbl (160,000,000 L) of fluids.[5]: 399  Even at this scale, by knowing petroleum's density and temperature, very precise volume measurement in these tanks can still be made.[5]: 403 

For even larger volumes such as in a reservoir, the container's volume is modeled by shapes and calculated using mathematics.[5]: 403 

Units

Some SI units of volume to scale and approximate corresponding mass of water

To ease calculations, a unit of volume is equal to the volume occupied by a unit cube (with a side length of one). Because the volume occupies three dimensions, if the metre (m) is chosen as a unit of length, the corresponding unit of volume is the cubic metre (m3). The cubic metre is also a SI derived unit.[16] Therefore, volume has a unit dimension of L3.[17]

The metric units of volume uses metric prefixes, strictly in powers of ten. When applying prefixes to units of volume, which are expressed in units of length cubed, the cube operators are applied to the unit of length including the prefix. An example of converting cubic centimetre to cubic metre is: 2.3 cm3 = 2.3 (cm)3 = 2.3 (0.01 m)3 = 0.0000023 m3 (five zeros).[18]: 143 

Commonly used prefixes for cubed length units are the cubic millimetre (mm3), cubic centimetre (cm3), cubic decimetre (dm3), cubic metre (m3) and the cubic kilometre (km3). The conversion between the prefix units are as follows: 1000 mm3 = 1 cm3, 1000 cm3 = 1 dm3, and 1000 dm3 = 1 m3.[1] The metric system also includes the litre (L) as a unit of volume, where 1 L = 1 dm3 = 1000 cm3 = 0.001 m3.[18]: 145  For the litre unit, the commonly used prefixes are the millilitre (mL), centilitre (cL), and the litre (L), with 1000 mL = 1 L, 10 mL = 1 cL, 10 cL = 1 dL, and 10 dL = 1 L.[1]

Various other imperial or U.S. customary units of volume are also in use, including:[5]: 396–398 

Capacity and volume

Capacity is the maximum amount of material that a container can hold, measured in volume or weight. However, the contained volume does not need to fill towards the container's capacity, or vice versa. Containers can only hold a specific amount of physical volume, not weight (excluding practical concerns). For example, a 50,000 bbl (7,900,000 L) tank that can just hold 7,200 t (15,900,000 lb) of fuel oil will not be able to contain the same 7,200 t (15,900,000 lb) of naphtha, due to naphtha's lower density and thus larger volume.[5]: 390–391 

Computation

Basic shapes

Proof without words that the volume of a cone is a third of a cylinder of equal diameter and height
1. A cone and a cylinder have radius r and height h.
2. The volume ratio is maintained when the height is scaled to h' = rπ.
3. Decompose it into thin slices.
4. Using Cavalieri's principle, reshape each slice into a square of the same area.
5. The pyramid is replicated twice.
6. Combining them into a cube shows that the volume ratio is 1:3.

For many shapes such as the cube, cuboid and cylinder, they have an essentially the same volume calculation formula as one for the prism: the base of the shape multiplied by its height.

Integral calculus

f(x) and g(x) rotated in the x-axis
Illustration of a solid of revolution, which the volume of rotated g(x) subtracts the volume of rotated f(x).

The calculation of volume is a vital part of integral calculus. One of which is calculating the volume of solids of revolution, by rotating a plane curve around a line on the same plane. The washer or disc integration method is used when integrating by an axis parallel to the axis of rotation. The general equation can be written as:where and are the plane curve boundaries.[19]: 1, 3  The shell integration method is used when integrating by an axis perpendicular to the axis of rotation. The equation can be written as:[19]: 6  The volume of a region D in three-dimensional space is given by the triple or volume integral of the constant function over the region. It is usually written as:[20]: Section 14.4 

In cylindrical coordinates, the volume integral is

In spherical coordinates (using the convention for angles with as the azimuth and measured from the polar axis; see more on conventions), the volume integral is

Geometric modeling

Tiled triangles to form a dolphin shape
Low poly triangle mesh of a dolphin

A polygon mesh is a representation of the object's surface, using polygons. The volume mesh explicitly define its volume and surface properties.

Derived quantities

See also

Notes

  1. ^ At constant temperature and pressure, ignoring other states of matter for brevity

References

  1. ^ a b c "SI Units - Volume". National Institute of Standards and Technology. April 13, 2022. Archived from the original on August 7, 2022. Retrieved August 7, 2022.
  2. ^ "IEC 60050 — Details for IEV number 102-04-40: "volume"". International Electrotechnical Vocabulary (in Japanese). Retrieved 2023-09-19.
  3. ^ "IEC 60050 — Details for IEV number 102-04-39: "three-dimensional domain"". International Electrotechnical Vocabulary (in Japanese). Retrieved 2023-09-19.
  4. ^ a b c d e f Imhausen, Annette (2016). Mathematics in Ancient Egypt: A Contextual History. Princeton University Press. ISBN 978-1-4008-7430-9. OCLC 934433864.
  5. ^ a b c d e f g h i j k l m n Treese, Steven A. (2018). History and Measurement of the Base and Derived Units. Cham, Switzerland: Springer Science+Business Media. ISBN 978-3-319-77577-7. LCCN 2018940415. OCLC 1036766223.
  6. ^ Rorres, Chris. "The Golden Crown". Drexel University. Archived from the original on 11 March 2009. Retrieved 24 March 2009.
  7. ^ Graf, E. H. (2004). "Just what did Archimedes say about buoyancy?". The Physics Teacher. 42 (5): 296–299. Bibcode:2004PhTea..42..296G. doi:10.1119/1.1737965. Archived from the original on 2021-04-14. Retrieved 2022-08-07.
  8. ^ a b "Balances, Weights and Measures" (PDF). Royal Pharmaceutical Society. 4 Feb 2020. p. 1. Archived (PDF) from the original on 20 May 2022. Retrieved 13 August 2022.
  9. ^ Cardarelli, François (6 Dec 2012). Scientific Unit Conversion: A Practical Guide to Metrication (2nd ed.). London: Springer Science+Business Media. p. 151. ISBN 978-1-4471-0805-4. OCLC 828776235.
  10. ^ Cox, Edward Franklin (1958). A History of the Metric System of Weights and Measures, with Emphasis on Campaigns for its Adoption in Great Britain, and in The United States Prior to 1914 (PhD thesis). Indiana University. pp. 99–100. ProQuest 301905667.
  11. ^ Cook, James L. (1991). Conversion Factors. Oxford [England]: Oxford University Press. pp. xvi. ISBN 0-19-856349-3. OCLC 22861139.
  12. ^ Marion, Jerry B. (1982). Physics For Science and Engineering. CBS College Publishing. p. 3. ISBN 978-4-8337-0098-6.
  13. ^ "Mise en pratique for the definition of the metre in the SI" (PDF). International Bureau of Weights and Measures. Consultative Committee for Length. 20 May 2019. p. 1. Archived (PDF) from the original on 13 August 2022. Retrieved 13 August 2022.
  14. ^ "Volume - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2023-05-27.
  15. ^ "Use of Micropipettes" (PDF). Buffalo State College. Archived from the original (PDF) on 4 August 2016. Retrieved 19 June 2016.
  16. ^ "Area and Volume". National Institute of Standards and Technology. February 25, 2022. Archived from the original on August 7, 2022. Retrieved August 7, 2022.
  17. ^ Lemons, Don S. (16 March 2017). A Student's Guide to Dimensional Analysis. New York: Cambridge University Press. p. 38. ISBN 978-1-107-16115-3. OCLC 959922612.
  18. ^ a b The International System of Units (PDF) (9th ed.). International Bureau of Weights and Measures. Dec 2022. ISBN 978-92-822-2272-0.
  19. ^ a b "Volumes by Integration" (PDF). Rochester Institute of Technology. 22 September 2014. Archived (PDF) from the original on 2 February 2022. Retrieved 12 August 2022.
  20. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks Cole Cengage Learning. ISBN 978-0-495-01166-8.
  21. ^ Benson, Tom (7 May 2021). "Gas Density". Glenn Research Center. Archived from the original on 2022-08-09. Retrieved 2022-08-13.
  22. ^ Cengel, Yunus A.; Boles, Michael A. (2002). Thermodynamics: an engineering approach. Boston: McGraw-Hill. p. 11. ISBN 0-07-238332-1.

Read other articles:

Cadillac V-LMDhKategoriLMDhKonstruktorDallaraPerancangChris Mikalauskas[1]PendahuluCadillac DPi-V.RSpesifikasi teknisSasisMonocoque serat karbon berbasis LMP2MesinV8 NA, 32-valve, DOHCMotor listrikUnit generator motor terpisah yang dipasang di depan + peredam kecepatan tunggalSejarah kompetisiTim pemakai Action Express Racing Chip Ganassi RacingPembalap Sébastien Bourdais Scott Dixon Renger van der Zande Earl Bamber Alex Lynn Richard Westbrook Jack Aitken Pipo Derani Alexander SimsDe...

 

 

Asmara AbigailLahirAsmara Abigail Sumiskum3 April 1992 (umur 31)Jakarta, IndonesiaKebangsaanIndonesiaPekerjaanAktrispenarimodelTahun aktif2012—sekarang Asmara Abigail Sumiskum (lahir 3 April 1992)[1] adalah aktris, penari, dan model Indonesia. Asmara merupakan seorang model remaja dan penari teater, sebelum membintangi film panjang perdananya yang berjudul Setan Jawa pada tahun 2016.[1] Namanya mulai dikenal setelah berperan sebagai Darminah dalam film Pengabdi Se...

 

 

Полесская низменность Полесская низменность обозначена цветом Расположение 52°00′ с. ш. 28°30′ в. д.HGЯO Страны Белоруссия Украина Полесская низменность Поле́сская ни́зменность (белор. Пале́ская нізі́на, укр. Полі́ська низовина́) — низменность, располож�...

في الاقتصاد، الفائدة المركبة (بالإنجليزية: Compound interest)‏ تنشأ عندما تجمع الفائدة إلى المبلغ الأصلي، ومن تلك اللحظة يحق للفائدة بالإضافة إلى المبلغ الأصلي principal تجميع فائدة خلال فترة لاحقة.[1][2][3] وتسمى إضافة الفائدة إلى المبلغ الأصلي تركيب الفائدة مع المبلغ الأص...

 

 

Nearkhos (Yunani: Νέαρχος, Nearchos; skt. 360 – 300 SM) merupakan salah seorang pejabat, Navarkhos di dalam pasukan Aleksander Agung. Ia dikenal karena perjalanannya yang terkenal dari Sungai Indus ke Teluk Persia setelah kampanye India Aleksander Agung, pada tahun 326–324 SM. Kisah pelayarannya diberikan di Arrianos Indica, yang ditulis pada abad ke-2 M. Peta yang menunjukkan pelayaran Nearkhos dan kampanye Aleksander sampai tak lama setelah memperoleh Kekaisaran Persian – d...

 

 

American actressFor the chess player, see Peggy Wood (chess). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Peggy Wood – news · newspapers · books · scholar · JSTOR (July 2020) (Learn how and when to remove this template message) Peggy WoodPhotograph of Wood in 1917BornMary Margaret Wood(1892-02-09)Februar...

Federasi Sepak Bola LatviaUEFADidirikan19 Juni 1921; 102 tahun lalu (1921-06-19)Bergabung dengan FIFA1922–19401992–sekarangBergabung dengan UEFA1992PresidenVadims ĻašenkoWebsitewww.lff.lv Federasi Sepak Bola Latvia (bahasa Latvia: Latvijas Futbola federācija [] simakⓘ; LFF [ˌelːefˈefː] simakⓘ) ) adalah badan yang mengatur sepak bola di Latvia dengan kantor pusatnya berlokasi di ibu kota Riga. Kegiatannya meliputi pengorganisasian kejuaraan sepak bola Latvia (...

 

 

Hak Perbedaan teoretis Hak klaim dan hak kebebasan Hak individu dan hak kolektif Hak kodrati dan hak ikhtiyari Hak positif dan hak negatif Hak asasi manusia Hak sipil dan politik Hak ekonomi, sosial, dan budaya Hak generasi ketiga Berdasarkan penerima Anak-anak Buruh Difabel Hewan Interseks LGBT Manusia Minoritas Penduduk asli Perempuan Kelompok hak lainnya Hak penentuan nasib sendiri Hak reproduktif lbs Hak-hak buruh adalah sejumlah peraturan perundangan dan hak asasi manusia yang terkait de...

 

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. تضم ولاية رود آيلاند خمسة مقاطعات وهي تشارك هاواي في أقل عدد من المقاطعات (بينما تضم ولاية ديلاوير ثلاث مقاطعات وهي الأصغر من حيث عدد المقاطعات)[1] المقاطعات مقاطعة INCITS[2...

Use of pre-existing objects or images with little or no transformation applied to them This article is about an artistic practice. For the cultural practice, see Cultural appropriation. For another cultural practice, see Reappropriation. In art, appropriation is the use of pre-existing objects or images with little or no transformation applied to them.[1] The use of appropriation has played a significant role in the history of the arts (literary, visual, musical and performing arts). ...

 

 

Elections in India in 1978 This article is part of a series on the Politics of India Constitution and law Constitution of India Fundamental Rights, Directive Principles and Fundamental Duties of India Human rights Judicial review Taxation Uniform Civil Code Basic structure doctrine Amendment Law of India Indian criminal law Bharatiya Nyaya Sanhita Bharatiya Nagarik Suraksha Sanhita Bharatiya Sakshya Adhiniyam Code of Civil Procedure (India) Government President of India Droupadi Murmu Vice Pr...

 

 

« Pouchkine » redirige ici. Pour les autres significations, voir Pouchkine (homonymie). Ne doit pas être confondu avec Alexandre Pouchkine (danseur). Alexandre Pouchkine Portrait d'Alexandre Pouchkine (1827) par Vassili Tropinine. Données clés Naissance 6 juin 1799 Moscou (Empire russe) Décès 10 février 1837 (à 37 ans) Saint-Pétersbourg(Empire russe) Activité principale poète, dramaturge et romancier Auteur Langue d’écriture Russe, français Mouvement Romantique...

Cet article est une ébauche concernant le handball. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Handball à onze Données clés Fédération internationale Fédération internationale de handball Sport olympique depuis 1936 Le handball à onze en 1953 modifier Le handball à onze est la forme initiale du handball. Il est disputé à onze joueurs en extérieur, sur un terrain herbeux semblable à un terrain ...

 

 

Intercollegiate sports teams of University of Georgia Georgia BulldogsUniversityUniversity of GeorgiaConferenceSECNCAADivision I (FBS)Athletic directorJosh BrooksLocationAthens, GeorgiaVarsity teams21Football stadiumSanford StadiumBasketball arenaStegeman ColiseumBaseball stadiumFoley FieldSoftball stadiumJack Turner StadiumAquatics centerGabrielsen NatatoriumOther venuesSpec Towns TrackMascotUgaHairy DawgNicknameBulldogs, 'DawgsFight songHail to Georgia[1]ColorsRed and blac...

 

 

Pour les articles homonymes, voir UEC. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article peut contenir un travail inédit ou des déclarations non vérifiées (août 2020). Vous pouvez aider en ajoutant des références ou en supprimant le contenu inédit. Voir la page de discussion pour plus de détails. Union des étudiants communistesHistoireFondation 1939CadreType Organisation politiqueSiège Place du Colonel-FabienPays  FranceOrganisationS...

Posisi Angli Tengah dalam hubungannya dengan suku lain, skt. 600 Angli Tengah (bahasa Inggris: Middle Angles) adalah suku Anglo-Saxon yang hidup di timur Midlands saat ini, di sekitar lokasi yang sekarang disebut Leicestershire, antara kerajaan Mercia dan Kerajaan Anglia Timur. Suku ini terdiri dari kumpulan beragam suku yang telah mempertahankan identitas yang berbeda, dilihat dari daftar Tribal Hidage. Beda Venerabilis menyatakan bahwa sekitar 653, Raja Penda dari Mercia menempatkan putrany...

 

 

For other uses, see South Stoke (disambiguation). Human settlement in EnglandSouth StokeSt. Andrew's parish churchSouth StokeLocation within OxfordshireArea7.68 km2 (2.97 sq mi)Population458 (parish (2001 census)[1]• Density60/km2 (160/sq mi)OS grid referenceSU6083Civil parishSouth StokeDistrictSouth OxfordshireShire countyOxfordshireRegionSouth EastCountryEnglandSovereign stateUnited KingdomPost townReadingPostcode districtRG8D...

 

 

Banco Industrial de Venezuela C.A. Tipo Compañía AnónimaIndustria FinanzasFundación 23 de julio de 1937 (86 años)Sede central Caracas D.C., Venezuela VenezuelaProductos Servicios financierosEmpleados 2.080Sitio web Banco Industrial de Venezuela[editar datos en Wikidata] El Banco Industrial de Venezuela (BIV) fue una institución financiera venezolana de capital nacional del Estado especializado en banca comercial. Tenía su sede principal en Caracas. Para enero de 2008 con...

County in South Dakota, United States County in South DakotaHaakon CountyCountyHaakon County Courthouse in PhilipLocation within the U.S. state of South DakotaSouth Dakota's location within the U.S.Coordinates: 44°18′N 101°32′W / 44.3°N 101.53°W / 44.3; -101.53Country United StatesState South DakotaFounded1914 (created)1915 (organized)Named forHaakon VII of NorwaySeatPhilipLargest cityPhilipArea • Total1,827 sq mi (4,730 km2...

 

 

Byron Reed, 1854–1904 Nebraskans Byron Reed (March 12, 1829 – June 6, 1891) was an American pioneer real estate businessman and local politician in Omaha, Nebraska. He founded the first real estate office in the Nebraska Territory and became the foremost agent after Nebraska achieved statehood.[1] Biography Reed was born in Darien, Genesee County, New York. While he was attending the Alexander Classical School, Reed's family moved to Darien, Wisconsin. At the age of 20 he took...