Spheroid

Spheroids with vertical rotational axes
oblate prolate

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

If the ellipse is rotated about its major axis, the result is a prolate spheroid, elongated like a rugby ball. The American football is similar but has a pointier end than a spheroid could. If the ellipse is rotated about its minor axis, the result is an oblate spheroid, flattened like a lentil or a plain M&M. If the generating ellipse is a circle, the result is a sphere.

Due to the combined effects of gravity and rotation, the figure of the Earth (and of all planets) is not quite a sphere, but instead is slightly flattened in the direction of its axis of rotation. For that reason, in cartography and geodesy the Earth is often approximated by an oblate spheroid, known as the reference ellipsoid, instead of a sphere. The current World Geodetic System model uses a spheroid whose radius is 6,378.137 km (3,963.191 mi) at the Equator and 6,356.752 km (3,949.903 mi) at the poles.

The word spheroid originally meant "an approximately spherical body", admitting irregularities even beyond the bi- or tri-axial ellipsoidal shape; that is how the term is used in some older papers on geodesy (for example, referring to truncated spherical harmonic expansions of the Earth's gravity geopotential model).[1]

Equation

The assignment of semi-axes on a spheroid. It is oblate if c < a (left) and prolate if c > a (right).

The equation of a tri-axial ellipsoid centred at the origin with semi-axes a, b and c aligned along the coordinate axes is

The equation of a spheroid with z as the symmetry axis is given by setting a = b:

The semi-axis a is the equatorial radius of the spheroid, and c is the distance from centre to pole along the symmetry axis. There are two possible cases:

  • c < a: oblate spheroid
  • c > a: prolate spheroid

The case of a = c reduces to a sphere.

Properties

Circumference

The equitorial circumference of a spheroid is measured around its equator and is given as:

The meridional or polar circumference of a spheroid is measured through its poles and is given as: The volumetric circumference of a spheroid is the circumference of a sphere of equal volume as the spheroid and is given as:

Area

An oblate spheroid with c < a has surface area

The oblate spheroid is generated by rotation about the z-axis of an ellipse with semi-major axis a and semi-minor axis c, therefore e may be identified as the eccentricity. (See ellipse.)[2]

A prolate spheroid with c > a has surface area

The prolate spheroid is generated by rotation about the z-axis of an ellipse with semi-major axis c and semi-minor axis a; therefore, e may again be identified as the eccentricity. (See ellipse.) [3]

These formulas are identical in the sense that the formula for Soblate can be used to calculate the surface area of a prolate spheroid and vice versa. However, e then becomes imaginary and can no longer directly be identified with the eccentricity. Both of these results may be cast into many other forms using standard mathematical identities and relations between parameters of the ellipse.

Volume

The volume inside a spheroid (of any kind) is

If A = 2a is the equatorial diameter, and C = 2c is the polar diameter, the volume is

Curvature

Let a spheroid be parameterized as

where β is the reduced latitude or parametric latitude, λ is the longitude, and π/2 < β < +π/2 and −π < λ < +π. Then, the spheroid's Gaussian curvature is

and its mean curvature is

Both of these curvatures are always positive, so that every point on a spheroid is elliptic.

Aspect ratio

The aspect ratio of an oblate spheroid/ellipse, c : a, is the ratio of the polar to equatorial lengths, while the flattening (also called oblateness) f, is the ratio of the equatorial-polar length difference to the equatorial length:

The first eccentricity (usually simply eccentricity, as above) is often used instead of flattening.[4] It is defined by:

The relations between eccentricity and flattening are:

All modern geodetic ellipsoids are defined by the semi-major axis plus either the semi-minor axis (giving the aspect ratio), the flattening, or the first eccentricity. While these definitions are mathematically interchangeable, real-world calculations must lose some precision. To avoid confusion, an ellipsoidal definition considers its own values to be exact in the form it gives.

Occurrence and applications

The most common shapes for the density distribution of protons and neutrons in an atomic nucleus are spherical, prolate, and oblate spheroidal, where the polar axis is assumed to be the spin axis (or direction of the spin angular momentum vector). Deformed nuclear shapes occur as a result of the competition between electromagnetic repulsion between protons, surface tension and quantum shell effects.

Spheroids are common in 3D cell cultures. Rotating equilibrium spheroids include the Maclaurin spheroid and the Jacobi ellipsoid. Spheroid is also a shape of archaeological artifacts.

Oblate spheroids

The planet Jupiter is a slight oblate spheroid with a flattening of 0.06487

The oblate spheroid is the approximate shape of rotating planets and other celestial bodies, including Earth, Saturn, Jupiter, and the quickly spinning star Altair. Saturn is the most oblate planet in the Solar System, with a flattening of 0.09796.[5] See planetary flattening and equatorial bulge for details.

Enlightenment scientist Isaac Newton, working from Jean Richer's pendulum experiments and Christiaan Huygens's theories for their interpretation, reasoned that Jupiter and Earth are oblate spheroids owing to their centrifugal force.[6][7] Earth's diverse cartographic and geodetic systems are based on reference ellipsoids, all of which are oblate.

Prolate spheroids

A rugby ball.

The prolate spheroid is the approximate shape of the ball in several sports, such as in the rugby ball.

Several moons of the Solar System approximate prolate spheroids in shape, though they are actually triaxial ellipsoids. Examples are Saturn's satellites Mimas, Enceladus, and Tethys and Uranus' satellite Miranda.

In contrast to being distorted into oblate spheroids via rapid rotation, celestial objects distort slightly into prolate spheroids via tidal forces when they orbit a massive body in a close orbit. The most extreme example is Jupiter's moon Io, which becomes slightly more or less prolate in its orbit due to a slight eccentricity, causing intense volcanism. The major axis of the prolate spheroid does not run through the satellite's poles in this case, but through the two points on its equator directly facing toward and away from the primary. This combines with the smaller oblate distortion from the synchronous rotation to cause the body to become triaxial.

The term is also used to describe the shape of some nebulae such as the Crab Nebula.[8] Fresnel zones, used to analyze wave propagation and interference in space, are a series of concentric prolate spheroids with principal axes aligned along the direct line-of-sight between a transmitter and a receiver.

The atomic nuclei of the actinide and lanthanide elements are shaped like prolate spheroids.[9] In anatomy, near-spheroid organs such as testis may be measured by their long and short axes.[10]

Many submarines have a shape which can be described as prolate spheroid.[11]

Dynamical properties

For a spheroid having uniform density, the moment of inertia is that of an ellipsoid with an additional axis of symmetry. Given a description of a spheroid as having a major axis c, and minor axes a = b, the moments of inertia along these principal axes are C, A, and B. However, in a spheroid the minor axes are symmetrical. Therefore, our inertial terms along the major axes are:[12]

where M is the mass of the body defined as

See also

References

  1. ^ Torge, Wolfgang (2001). Geodesy (3rd ed.). Walter de Gruyter. p. 104. ISBN 9783110170726.
  2. ^ A derivation of this result may be found at "Oblate Spheroid - from Wolfram MathWorld". Mathworld.wolfram.com. Retrieved 24 June 2014.
  3. ^ A derivation of this result may be found at "Prolate Spheroid - from Wolfram MathWorld". Mathworld.wolfram.com. 7 October 2003. Retrieved 24 June 2014.
  4. ^ Brial P., Shaalan C.(2009), Introduction à la Géodésie et au geopositionnement par satellites, p.8
  5. ^ "Spheroid - Explanation, Applications, Shape, Example and FAQs". VEDANTU. Retrieved 26 November 2024.
  6. ^ Greenburg, John L. (1995). "Isaac Newton and the Problem of the Earth's Shape". History of Exact Sciences. 49 (4). Springer: 371–391. doi:10.1007/BF00374704. JSTOR 41134011. S2CID 121268606.
  7. ^ Durant, Will; Durant, Ariel (28 July 1997). The Story of Civilization: The Age of Louis XIV. MJF Books. ISBN 1567310192.
  8. ^ Trimble, Virginia Louise (October 1973), "The Distance to the Crab Nebula and NP 0532", Publications of the Astronomical Society of the Pacific, 85 (507): 579, Bibcode:1973PASP...85..579T, doi:10.1086/129507
  9. ^ "Nuclear fission - Fission theory". Encyclopedia Britannica.
  10. ^ Page 559 in: John Pellerito, Joseph F Polak (2012). Introduction to Vascular Ultrasonography (6 ed.). Elsevier Health Sciences. ISBN 9781455737666.
  11. ^ "What Do a Submarine, a Rocket and a Football Have in Common?". Scientific American. 8 November 2010. Retrieved 13 June 2015.
  12. ^ Weisstein, Eric W. "Spheroid". MathWorld--A Wolfram Web Resource. Retrieved 16 May 2018.

Read other articles:

Consejería de Hacienda, Economía y Administración Pública de la Generalidad Valenciana Palacio del Almirante de Valencia, sede de la Consejería de Hacienda, Economía y Administración PúblicaLocalizaciónPaís EspañaInformación generalJurisdicción Comunidad ValencianaTipo ConsejeríaSede Calle del Palau, 1446003 Valencia (España)OrganizaciónDirección Ruth Merino (Consejera)Depende de Consejo de la Generalidad ValencianaDependencias SubsecretaríaIntervención General de la G...

 

 

Diagram yang menunjukkan penataan kamera tunggal. Kamera tunggal atau penataan kamera tunggal (Inggris: single-camera setupcode: en is deprecated atau single-camera mode of production), juga dikenal sebagai portable single camera, adalah metode pembuatan film dan produksi video. Penataan kamera tunggal awalnya dikembangkan semasa kemunculan sinema Hollywood klasik pada tahun 1910-an dan tetap menjadi mode produksi standar untuk sinema. Dalam produksi televisi, metode kamera tunggal dan multi ...

 

 

Gaya atau nada penulisan artikel ini tidak mengikuti gaya dan nada penulisan ensiklopedis yang diberlakukan di Wikipedia. Bantulah memperbaikinya berdasarkan panduan penulisan artikel. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Eyang Hasan Maulani Lengkong adalah ahli sufi yang hidup sekitar tahun 1800 an, beliau adalah penasihat Imam Bonjol dan ditangkap serta diasingkan oleh belanda serta meninggal di Menado sulawesi Tenggara. Beliau adalah tokoh berpengaruh dan men...

City in California, United States This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Menifee, California – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this template message) City in California, United StatesMenifee, CaliforniaCityCity of MenifeeNewport Road looking ...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Pour les articles homonymes, voir Heidelberg (homonymie). Heidelberg Vue sur Heidelberg. Armoiries Drapeau Administration Pays Allemagne Land Bade-Wurtemberg District(Regierungsbezirk) Karlsruhe Arrondissement(Landkreis) Heidelberg (ville-arrondissement) Nombre de quartiers(Ortsteile) 15 Bourgmestre(Bürgermeister) Eckart Würzner Code postal 69115-69126 Code communal(Gemeindeschlüssel) 08 2 21 000 Indicatif téléphonique 06221 Immatriculation HD Démographie Gentilé Heidelbergeois Popula...

Pour les articles homonymes, voir Volonté. Ne doit pas être confondu avec volition. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (octobre 2021). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « No...

 

 

Fatehpuri MosqueReligionAffiliationSunni IslamDistrictCentral DelhiLocationLocationChandni Chowk, Old DelhiStateDelhiCountryIndiaLocation in Delhi, IndiaShow map of DelhiFatehpuri Mosque (India)Show map of IndiaGeographic coordinates28°39′24.0″N 77°13′21.4″E / 28.656667°N 77.222611°E / 28.656667; 77.222611ArchitectureTypeMosqueStyleMughal architectureCreatorFatehpuri Begum (wife of Shahjahan)Date established1650; 374 years ago (1650) Hist...

 

 

1958 Japanese filmThe White Snake EnchantressTheatrical posterDirected byTaiji Yabushita [ja]Screenplay byTaiji YabushitaStory byShin UeharaBased onLegend of the White SnakeProduced byHiroshi ÔkawaStarringHisaya MorishigeMariko MiyagiNarrated byHisaya MorishigeCinematographyTakamitsu TsukaharaEdited byShinataro MiyamotoMusic byChuji KinoshitaHajime KaburagiMasayoshi IkedaProductioncompanyToei DogaDistributed byToei CompanyRelease date October 22, 1958 (1958-10-22)...

Food delivery and restaurant company Hello Curry Pvt. Ltd.IndustryFood delivery and restaurantFoundedEarly 2014FoundersSandeep Penumatsa & Raju BhupathiHeadquartersHyderabad, IndiaWebsitewww.hellocurry.com/index.php[dead link] Hello Curry Pvt. Ltd. is a food delivery and restaurant company based in Hyderabad, India.[1][2][3] The company was founded in early 2014, and in November 2015 had 32 outlets for its food delivery operations.[4][5] Far...

 

 

Sekolah Tinggi Agama Buddha NalandaDidirikanMei 1979KetuaDr. Sutrisno, S.IP., M.Si.AlamatJl. Pulo Gebang No.107, RT.13/RW.4, Pulo Gebang, Kec. Cakung, Kota Jakarta Timur, Daerah Khusus Ibukota Jakarta, Jakarta, DKI JakartaSitus webhttps://stabnalanda.ac.id https://nalanda.ac.id Sekolah Tinggi Agama Buddha Nalanda atau STAB Nalanda adalah sekolah tinggi agama Buddha yang pertama di Indonesia. Beralamatkan di Jl. Pulo Gebang No.107, RT.13/RW.4, Pulo Gebang, Kec. Cakung, Kota Jakarta Timur, Daer...

 

 

Fictional character from the British soap opera EastEnders Soap opera character Mel OwenEastEnders characterPortrayed byTamzin OuthwaiteDuration1998–2002, 2018–2019First appearanceEpisode 168319 October 1998 (1998-10-19)Last appearanceEpisode 602114 November 2019 (2019-11-14)ClassificationFormer; regularIntroduced byMatthew Robinson (1998)John Yorke (2018)Book appearancesSteve Owen: Still Waters (2001)Spin-offappearancesEastEnders: Th...

خريطة توضح أعداد المسيحيين اللاطائفيين في 2010   أكثر من 10 مليون   أكثر من 1 مليون مسيحية لا طائفية (بالإنجليزية: Nondenominational Christianity)‏ هُم المسيحيون الذين يصرحون بمسيحيتهم لكن يرفضون أن ينتموا إلى طائفة ويصنفون أيضاً كبروتستانت ويقولون أنهم مسيحيين بطريقتهم الخاصة م�...

 

 

16th-century BC royal cemetery in southern Greece Grave Circle ANative name Greek: Ταφικός περίβολος A'Grave Circle A (left) and the main entrance of the citadel (right)LocationMycenaeCoordinates37°43′49″N 22°45′22″E / 37.73028°N 22.75611°E / 37.73028; 22.75611AreaArgolis, GreeceFormed16th century BCBuilt forResting place of the Mycenaean ruling familiesLocation of Grave Circle A in Greece Grave Circle A is a 16th-century BC royal cemetery s...

 

 

Politeknik Pelayaran BantenNama sebelumnyaBalai Pendidikan dan Pelatihan Ilmu Pelayaran (BP2IP) TangerangMotoPatria Sapta Bahari BhaktiMoto dalam bahasa IndonesiaBakti Seorang Pelaut Yang TangguhDidirikan27 Oktober 2002Lembaga indukKementerian Perhubungan Republik IndonesiaAlamatJalan Raya Karang Serang No.1, Tangerang, Banten, IndonesiaSitus webpoltekpel-banten.ac.id Politeknik Pelayaran Banten[1] adalah institusi perguruan tinggi kedinasan di bidang maritim dan transportasi lau...

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Homosexuality in the militaries of ancient Greece – news · newspapers · books · scholar · JSTOR (June 2015) (Learn how and when to remove this message) Homosexuality in the militaries of ancient Greece was a significant aspect across the ancient Greek city-states, ranging from being a core part of militar...

 

 

Sedimentary rock exposure in Colorado and Utah, U.S. For AMD's APU codename, see AMD Raven Ridge. For the place in Washington state, see Raven Ridge (Washington). Raven Ridge. NASA satellite photo, 2008.[1] Raven Ridge is a starkly visible sedimentary rock exposure located in Rio Blanco County, Colorado and Uintah County, Utah, USA. It is managed by the Bureau of Land Management. The ridge contains a diverse selection of rare plants unique to the state of Colorado. Geology The Raven R...

 

 

Provinsi Badakhshan بدخشانProvinsiSuasan beberapa distrik di Provinsi BadakhshanPeta Afghanistan dengan Dataran tinggi BadakhshanKoordinat: 38°0′N 71°0′E / 38.000°N 71.000°E / 38.000; 71.000Negara AfghanistanIbukotaFayzabadPemerintahan • GubernurMaulvi Abdul Ghani Faiq[1] • Wakil GubernurNisar Ahmad Ahmadi[2]Luas[3] • Total44.059 km2 (17,011 sq mi)Populasi (2021)[4 ...

العلاقات الفيتنامية النيجيرية فيتنام نيجيريا   فيتنام   نيجيريا تعديل مصدري - تعديل   العلاقات الفيتنامية النيجيرية هي العلاقات الثنائية التي تجمع بين فيتنام ونيجيريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...

 

 

Paul Hodes Paul William Hodes[1] (lahir 21 Maret 1951) adalah seorang pengacara, musisi dan mantan anggota DPR Amerika Serikat, yang menjabat dari 2007 sampai 2011. Ia adalah anggota Partai Demokrat. Referensi ^ Paul William Hodes (D). The Washington Post. Diarsipkan dari versi asli tanggal 2012-07-13.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan) Pranala luar Wikimedia Commons memiliki media mengenai Paul Hodes. Paul Hodes for US Senate official camp...