Surface area

A sphere of radius r has surface area 4πr2.

The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies.[1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with flat polygonal faces), for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces. This definition of surface area is based on methods of infinitesimal calculus and involves partial derivatives and double integration.

A general definition of surface area was sought by Henri Lebesgue and Hermann Minkowski at the turn of the twentieth century. Their work led to the development of geometric measure theory, which studies various notions of surface area for irregular objects of any dimension. An important example is the Minkowski content of a surface.

Definition

While the areas of many simple surfaces have been known since antiquity, a rigorous mathematical definition of area requires a great deal of care. This should provide a function

which assigns a positive real number to a certain class of surfaces that satisfies several natural requirements. The most fundamental property of the surface area is its additivity: the area of the whole is the sum of the areas of the parts. More rigorously, if a surface S is a union of finitely many pieces S1, …, Sr which do not overlap except at their boundaries, then

Surface areas of flat polygonal shapes must agree with their geometrically defined area. Since surface area is a geometric notion, areas of congruent surfaces must be the same and the area must depend only on the shape of the surface, but not on its position and orientation in space. This means that surface area is invariant under the group of Euclidean motions. These properties uniquely characterize surface area for a wide class of geometric surfaces called piecewise smooth. Such surfaces consist of finitely many pieces that can be represented in the parametric form

with a continuously differentiable function The area of an individual piece is defined by the formula

Thus the area of SD is obtained by integrating the length of the normal vector to the surface over the appropriate region D in the parametric uv plane. The area of the whole surface is then obtained by adding together the areas of the pieces, using additivity of surface area. The main formula can be specialized to different classes of surfaces, giving, in particular, formulas for areas of graphs z = f(x,y) and surfaces of revolution.

Schwarz lantern with axial slices and radial vertices. The limit of the area as and tend to infinity doesn't converge. In particular it doesn't converge to the area of the cylinder.

One of the subtleties of surface area, as compared to arc length of curves, is that surface area cannot be defined simply as the limit of areas of polyhedral shapes approximating a given smooth surface. It was demonstrated by Hermann Schwarz that already for the cylinder, different choices of approximating flat surfaces can lead to different limiting values of the area; this example is known as the Schwarz lantern.[2][3]

Various approaches to a general definition of surface area were developed in the late nineteenth and the early twentieth century by Henri Lebesgue and Hermann Minkowski. While for piecewise smooth surfaces there is a unique natural notion of surface area, if a surface is very irregular, or rough, then it may not be possible to assign an area to it at all. A typical example is given by a surface with spikes spread throughout in a dense fashion. Many surfaces of this type occur in the study of fractals. Extensions of the notion of area which partially fulfill its function and may be defined even for very badly irregular surfaces are studied in geometric measure theory. A specific example of such an extension is the Minkowski content of the surface.

Common formulas

Surface areas of common solids
Shape Formula/Equation Variables
Cube a = side length
Cuboid l = length, b = breadth, h = height
Triangular prism b = base length of triangle, h = height of triangle, l = distance between triangular bases, p, q, r = sides of triangle
All prisms B = the area of one base, P = the perimeter of one base, h = height
Sphere r = radius of sphere, d = diameter
Hemisphere r = radius of the hemisphere
Hemispherical shell R = external radius of hemisphere, r = internal radius of hemisphere
Spherical lune r = radius of sphere, θ = dihedral angle
Torus r = minor radius (radius of the tube), R = major radius (distance from center of tube to center of torus)
Closed cylinder r = radius of the circular base, h = height of the cylinder
Cylindrical annulus R = External radius

r = Internal radius, h = height

Capsule r = radius of the hemispheres and cylinder, h = height of the cylinder
Curved surface area of a cone

s = slant height of the cone, r = radius of the circular base, h = height of the cone

Full surface area of a cone s = slant height of the cone, r = radius of the circular base, h = height of the cone
Regular Pyramid B = area of base, P = perimeter of base, s = slant height
Square pyramid b = base length, s = slant height, h = vertical height
Rectangular pyramid l = length, b = breadth, h = height
Tetrahedron a = side length
Surface of revolution
Parametric surface = parametric vector equation of surface,

= partial derivative of with respect to ,
= partial derivative of with respect to ,
= shadow region

Ratio of surface areas of a sphere and cylinder of the same radius and height

A cone, sphere and cylinder of radius r and height h.

The below given formulas can be used to show that the surface area of a sphere and cylinder of the same radius and height are in the ratio 2 : 3, as follows.

Let the radius be r and the height be h (which is 2r for the sphere).

The discovery of this ratio is credited to Archimedes.[4]

In chemistry

Surface area of particles of different sizes.

Surface area is important in chemical kinetics. Increasing the surface area of a substance generally increases the rate of a chemical reaction. For example, iron in a fine powder will combust,[5] while in solid blocks it is stable enough to use in structures. For different applications a minimal or maximal surface area may be desired.

In biology

The inner membrane of the mitochondrion has a large surface area due to infoldings, allowing higher rates of cellular respiration (electron micrograph).[6]

The surface area of an organism is important in several considerations, such as regulation of body temperature and digestion.[7] Animals use their teeth to grind food down into smaller particles, increasing the surface area available for digestion.[8] The epithelial tissue lining the digestive tract contains microvilli, greatly increasing the area available for absorption.[9] Elephants have large ears, allowing them to regulate their own body temperature.[10] In other instances, animals will need to minimize surface area;[11] for example, people will fold their arms over their chest when cold to minimize heat loss.

The surface area to volume ratio (SA:V) of a cell imposes upper limits on size, as the volume increases much faster than does the surface area, thus limiting the rate at which substances diffuse from the interior across the cell membrane to interstitial spaces or to other cells.[12] Indeed, representing a cell as an idealized sphere of radius r, the volume and surface area are, respectively, V = (4/3)πr3 and SA = 4πr2. The resulting surface area to volume ratio is therefore 3/r. Thus, if a cell has a radius of 1 μm, the SA:V ratio is 3; whereas if the radius of the cell is instead 10 μm, then the SA:V ratio becomes 0.3. With a cell radius of 100, SA:V ratio is 0.03. Thus, the surface area falls off steeply with increasing volume.

See also

References

  1. ^ Weisstein, Eric W. "Surface Area". MathWorld.
  2. ^ "Schwarz's Paradox" (PDF). Archived (PDF) from the original on 4 March 2016. Retrieved 21 March 2017.
  3. ^ "Archived copy" (PDF). Archived from the original (PDF) on 15 December 2011. Retrieved 24 July 2012.{{cite web}}: CS1 maint: archived copy as title (link)
  4. ^ Rorres, Chris. "Tomb of Archimedes: Sources". Courant Institute of Mathematical Sciences. Archived from the original on 9 December 2006. Retrieved 2 January 2007.
  5. ^ Nasr, Somaye; Plucknett, Kevin P. (20 February 2014). "Kinetics of Iron Ore Reduction by Methane for Chemical Looping Combustion". Energy & Fuels. 28 (2): 1387–1395. doi:10.1021/ef402142q. ISSN 0887-0624.
  6. ^ Paumard, Patrick; Vaillier, Jacques; Coulary, Bénédicte; Schaeffer, Jacques; Soubannier, Vincent; Mueller, David M.; Brèthes, Daniel; di Rago, Jean-Paul; Velours, Jean (1 February 2002). "The ATP synthase is involved in generating mitochondrial cristae morphology". The EMBO Journal. 21 (3): 221–230. doi:10.1093/emboj/21.3.221. PMC 125827. PMID 11823415.
  7. ^ Narasimhan, Arunn (1 July 2008). "Why do elephants have big ear flaps?". Resonance. 13 (7): 638–647. doi:10.1007/s12045-008-0070-5. ISSN 0973-712X.
  8. ^ Feher, Joseph (2012), "Mouth and Esophagus", Quantitative Human Physiology, Elsevier, pp. 689–700, doi:10.1016/b978-0-12-382163-8.00077-3, ISBN 978-0-12-382163-8, retrieved 30 March 2024
  9. ^ "Microvillus | Description, Anatomy, & Function | Britannica". www.britannica.com. Retrieved 30 March 2024.
  10. ^ Wright, P. G. (1984). "Why do elephants flap their ears?". African Zoology. 19 (4): 266–269. ISSN 2224-073X.
  11. ^ Stocks, Jodie M.; Taylor, Nigel A.S.; Tipton, Michael J.; Greenleaf, John E. (1 May 2004). "Human Physiological Responses to Cold Exposure". Aviation, Space, and Environmental Medicine. 75 (5): 444–457. PMID 15152898.
  12. ^ Deaver, James R. (1 November 1978). "Modeling Limits to Cell Size". The American Biology Teacher. 40 (8): 502–504. doi:10.2307/4446369. ISSN 0002-7685. JSTOR 4446369.

Read other articles:

Le Grand-Saconnexcittà Le Grand-Saconnex – Veduta LocalizzazioneStato Svizzera Cantone Ginevra DistrettoNon presente AmministrazioneLingue ufficialifrancese TerritorioCoordinate46°14′00″N 6°08′00″E / 46.233333°N 6.133333°E46.233333; 6.133333 (Le Grand-Saconnex)Coordinate: 46°14′00″N 6°08′00″E / 46.233333°N 6.133333°E46.233333; 6.133333 (Le Grand-Saconnex) Altitudine445 m s.l.m. Superficie4,38 km² Abitanti12&#...

 

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa Oirat ᡆᡕᡅᠷᠠᡑ ᡘᡄᠯᡄᠨ, Oirad kelen ᠮᠣᠩᠭᠣᠯ ᠬᠡᠯᠡᠨ ᠦ ᠣᠶᠢᠷᠠᠳ ᠠᠶᠠᠯᠭᠤMongγol kelen-ü Oyirad ayalγu Dituturkan diMongolia, Rusia, Tiongkok, Kyrgyzstan[1]WilayahKhovd, Uvs,[2] Bayan-Ölgii,[3] Kalmykia, Xinjiang, Gansu, QinghaiEtnisSuku Oirat (6...

 

Letak Haute-Marne di Prancis. Haute-Marne adalah sebuah departemen yang terletak di region Champagne-Ardenne, Prancis. Beribukotakan Chaumont, departemen ini berpenduduk 194.873 jiwa (1999). Ada 3 arrondissement, 32 kanton, dan 432 kotamadya di Haute-Marne. Wikimedia Commons memiliki media mengenai Haute-Marne. lbsDepartemen di Prancis 01 Ain 02 Aisne 03 Allier 04 Alpes-de-Haute-Provence 05 Hautes-Alpes 06 Alpes-Maritimes 07 Ardèche 08 Ardennes 09 Ariège 10 Aube 11 Aude 12 Aveyron 13 Bouche...

العلاقات الألمانية الكازاخستانية ألمانيا كازاخستان   ألمانيا   كازاخستان تعديل مصدري - تعديل   العلاقات الألمانية الكازاخستانية هي العلاقات الثنائية التي تجمع بين ألمانيا وكازاخستان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية �...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article sur le sport doit être recyclé (février 2022). Une réorganisation et une clarification du contenu paraissent nécessaires. Améliorez-le, discutez des points à améliorer ou précisez les sections à recycler en utilisant {{section à recycler}}. SnowboardPlanche à neige Données clés Sport olympique depuis 1998 modifier Un snowboardeur qui pratique le Jib Le snowboard, surf des neiges, planche...

 

Research and analysis division of Economist Group Economist Intelligence Unit LimitedCompany typeBusiness unitFounded1946HeadquartersLondon, EnglandProductsForecasting, economic research and analysisParentEconomist GroupSubsidiariesBazian, Clearstate, Canback ConsultingWebsitewww.eiu.com The Economist Intelligence Unit (EIU) is the research and analysis division of the Economist Group, providing forecasting and advisory services through research and analysis, such as monthly country reports, ...

Mokhatat Al-HaramainLingkunganNegaraArab SaudiProvinsiProvinsi MakkahPemerintahan • Wali kotaHani Abu Ras[1] • Gubernur kotaMish'al Al-SaudKetinggian12 m (39 ft)Zona waktuUTC+3 (AST) • Musim panas (DST)ASTKode pos(5 kode digit dimulai dari 23; e.g. 23434)Kode area telepon+966-12Situs webwww.jeddah.gov.sa/english/index.php Mokhatat Al-Haramain adalah sebuah permukiman padat penduduk di kota Jeddah di Provinsi Makkah, tepatnya di sebelah bar...

 

For the tributary of the Vilyuy, see Markha (Vilyuy). RiverMarkhaМархаMouth of the Markha in the Lena Sentinel-2 image.Mouth location in Yakutia, RussiaShow map of Sakha RepublicMarkha (Lena) (Russia)Show map of RussiaPhysical characteristicsSource  • locationLena Plateau • coordinates61°59′44″N 122°00′16″E / 61.99556°N 122.00444°E / 61.99556; 122.00444 MouthLena • coordinates60°35′12″N 123...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2017年12月19日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:若望保祿二世 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目的语调或风格或許不合百科全書。 (2024年1月29日)請根據指南協助改善这篇条目,並在讨论页討論問題所在,加以改善。 此生者传记条目需要补充更多可供查證的来源。 (2024年1月29日)请协助補充可靠来源,无法查证的在世人物内容将被立即移除。   此条目页的主題是中华人民共和国现任国...

 

西維珍尼亞 美國联邦州State of West Virginia 州旗州徽綽號:豪华之州地图中高亮部分为西維珍尼亞坐标:37°10'N-40°40'N, 77°40'W-82°40'W国家 美國加入聯邦1863年6月20日(第35个加入联邦)首府(最大城市)查爾斯頓政府 • 州长(英语:List of Governors of {{{Name}}}]]) • 副州长(英语:List of lieutenant governors of {{{Name}}}]])吉姆·賈斯蒂斯(R)米奇·卡邁克爾(...

 

Questa voce sull'argomento centri abitati della provincia di Buenos Aires è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Disambiguazione – Se stai cercando la città francese, vedi Boulogne-sur-Mer. Boulogne Sur MercittàBoulogne Sur Mer – Veduta LocalizzazioneStato Argentina Provincia Buenos Aires DipartimentoSan Isidro TerritorioCoordinate34°30′S 58°34′W / 34.5°S 58.566667°W-34.5; -58.566667 (Boulogne Sur Mer...

Medical conditionEpithelioid HemangioendotheliomaMicrograph of an epithelioid hemangioendothelioma of the liver.SpecialtyOncology Epithelioid hemangioendothelioma (EHE) is a rare tumor, first characterized by Sharon Weiss and Franz Enzinger in 1982[1] that both clinically and histologically is intermediate between angiosarcoma and hemangioma. However, a distinct, disease-defining genetic alteration recently described for EHE indicates that it is an entirely separate entity from both a...

 

1900年美國總統選舉 ← 1896 1900年11月6日 1904 → 447張選舉人票獲勝需224張選舉人票投票率73.2%[1] ▼ 6.1 %   获提名人 威廉·麥金利 威廉·詹寧斯·布賴恩 政党 共和黨 民主党 家鄉州 俄亥俄州 內布拉斯加州 竞选搭档 西奧多·羅斯福 阿德萊·史蒂文森一世 选举人票 292 155 胜出州/省 28 17 民選得票 7,228,864 6,370,932 得票率 51.6% 45.5% 總統選舉結果地圖,紅色代表�...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: John Bowes-Lyon – berita · surat kabar · buku · cendekiawan · JSTOR John Herbert Jock Bowes-Lyon (1 April 1886–7 Februari 1930) adalah putra kedua dari Pangeran Strathmore dan Kinghorne ke-14 dan Putri...

Nepali politician Jeevan Ram Shresthaजीवन राम श्रेष्ठMinister of Culture, Tourism and Civil AviationIn office27 June 2022 – 26 December 2022PresidentBidhya Devi BhandariPrime MinisterSher Bahadur DeubaPreceded byPrem AleSucceeded bySudan KiratiMember of Parliament, Pratinidhi SabhaIn office4 March 2018 – 18 September 2022Preceded byNabindra Raj JoshiSucceeded byBiraj Bhakta ShresthaConstituencyKathmandu 8Chair of Nepal Olympic CommitteeIncumbe...

 

Death penalty abolition advocate SisterHelen PrejeanCSJPrejean in 2006Born (1939-04-21) April 21, 1939 (age 85)Baton Rouge, Louisiana, U.S.EducationSt. Mary's Dominican CollegeSaint Paul UniversityOccupation(s)Sister, spiritual adviser, author, anti-death penalty activist Helen Prejean CSJ (/preɪˈʒɑːn/ pray-ZHAHN;[1] born April 21, 1939) is a Catholic religious sister and a leading American advocate for the abolition of the death penalty. She is known for her best-selling bo...

 

جائزة إسبانيا الكبرى 1989 (بالإسبانية: XXXI Gran Premio Tio Pepe de España)‏  السباق 14 من أصل 16 في بطولة العالم لسباقات الفورمولا واحد موسم 1989 السلسلة بطولة العالم لسباقات فورمولا 1 موسم 1989  البلد إسبانيا  التاريخ 1 أكتوبر 1989 مكان التنظيم شريش، إسبانيا طول المسار 4.218 كيلومتر (2.6209 م�...

State beach in Monterey and Santa Cruz counties, California, United States Zmudowski State BeachZmudowski State BeachShow map of CaliforniaShow map of the United StatesLocationMonterey County, United StatesNearest cityMoss LandingCoordinates36°50′36″N 121°48′17″W / 36.84333°N 121.80472°W / 36.84333; -121.80472Governing bodyCalifornia Department of Parks and Recreation Zmudowski State Beach is located on Monterey Bay, in Moss Landing, Monterey Coun...

 

Bugie, baci, bambole & bastardiSean Penn in una scena del filmTitolo originaleHurlyburly Paese di produzioneStati Uniti d'America Anno1998 Durata122 min Generecommedia, drammatico RegiaAnthony Drazan SceneggiaturaDavid Rabe ProduttoreAnthony Drazan, Richard N. Gladstein, David Hamburger FotografiaGu Chang Wei MontaggioDylan Tichenor MusicheDavid Baerwald, Steve Lindsey ScenografiaMichael D. Haller CostumiMary Claire Hannan Interpreti e personaggi Sean Penn: Eddie Kevin Spacey: Mickey ...