The accessible surface area (ASA) or solvent-accessible surface area (SASA) is the surface area of a biomolecule that is accessible to a solvent. Measurement of ASA is usually described in units of square angstroms (a standard unit of measurement in molecular biology). ASA was first described by Lee & Richards in 1971 and is sometimes called the Lee-Richards molecular surface.[1] ASA is typically calculated using the 'rolling ball' algorithm developed by Shrake & Rupley in 1973.[2] This algorithm uses a sphere (of solvent) of a particular radius to 'probe' the surface of the molecule.
Methods of calculating ASA
Shrake–Rupley algorithm
The Shrake–Rupley algorithm is a numerical method that draws a mesh of points equidistant from each atom of the molecule and uses the number of these points that are solvent accessible to determine the surface area.[2] The points are drawn at a water molecule's estimated radius beyond the van der Waals radius, which is effectively similar to ‘rolling a ball’ along the surface. All points are checked against the surface of neighboring atoms to determine whether they are buried or accessible. The number of points accessible is multiplied by the portion of surface area each point represents to calculate the ASA. The choice of the 'probe radius' does have an effect on the observed surface area, as using a smaller probe radius detects more surface details and therefore reports a larger surface. A typical value is 1.4Å, which approximates the radius of a water molecule. Another factor that affects the results is the definition of the VDW radii of the atoms in the molecule under study. For example, the molecule may often lack hydrogen atoms, which are implicit in the structure. The hydrogen atoms may be implicitly included in the atomic radii of the 'heavy' atoms, with a measure called the 'group radii'. In addition, the number of points created on the van der Waals surface of each atom determines another aspect of discretization, where more points provide an increased level of detail.
LCPO method
The LCPO method uses a linear approximation of the two-body problem for a quicker analytical calculation of ASA.[3] The approximations used in LCPO result in an error in the range of 1-3 Ų.
Power Diagram method
Recently[when?], a method was presented that calculates ASA fast and analytically using a power diagram.[4]
Applications
Accessible surface area is often used when calculating the transfer free energy required to move a biomolecule from an aqueous solvent to a non-polar solvent, such as a lipid environment. The LCPO method is also used when calculating implicit solvent effects in the molecular dynamics software package AMBER.
The ASA is closely related to the concept of the solvent-excluded surface (also known as the Connolly's molecular surface area or simply Connolly surface), which is imagined as a cavity in bulk solvent. It is also calculated in practice via a rolling-ball algorithm developed by Frederic Richards[7] and implemented three-dimensionally by Michael Connolly in 1983[8] and Tim Richmond in 1984.[9] Connolly spent several more years perfecting the method.[10]
^Lee, B; Richards, FM. (1971). "The interpretation of protein structures: estimation of static accessibility". J Mol Biol. 55 (3): 379–400. doi:10.1016/0022-2836(71)90324-X. PMID5551392.
^ abShrake, A; Rupley, JA. (1973). "Environment and exposure to solvent of protein atoms. Lysozyme and insulin". J Mol Biol. 79 (2): 351–71. doi:10.1016/0022-2836(73)90011-9. PMID4760134.
^Richmond, T. J. (1984). "Solvent accessible surface area and excluded volume in proteins. Analytical equations for overlapping spheres and implications for the hydrophobic effect". J Mol Biol. 178 (1): 63–89. doi:10.1016/0022-2836(84)90231-6. PMID6548264.
Richmond, Timothy J. (1984). "solvent accessible surface area and excluded volume in proteins". J. Mol. Biol. 178 (1): 63–89. doi:10.1016/0022-2836(84)90231-6. PMID6548264.
Connolly, Michael L. (1985). "Computation of molecular volume". J. Am. Chem. Soc. 107 (5): 118–1124. doi:10.1021/ja00291a006.
Blaney, J. M. (1994). "Distance Geometry in Molecular Modeling". Reviews in Computational Chemistry. Rev. Comput. Chem. Vol. 5. pp. 299–335. doi:10.1002/9780470125823.ch6. ISBN9780470125823.
Grant, J. A.; Pickup, B. T. (1995). "A Gaussian description of molecular shape". J. Phys. Chem. 99 (11): 3503–3510. doi:10.1021/j100011a016.
Petitjean, M (1994). "On the Analytical Calculation of van der Waals Surfaces and Volumes: Some Numerical Aspects". J. Comput. Chem. 15 (5): 507–523. doi:10.1002/jcc.540150504. S2CID24101766.
Busa, Jan; Dzurina, Jozef; Hayryan, Edik (2005). "ARVO: A fortran package for computing the solvent accessible surface area and the excluded volume of overlapping spheres via analytic equations". Comput. Phys. Commun. 165 (1): 59–96. Bibcode:2005CoPhC.165...59B. doi:10.1016/j.cpc.2004.08.002.
FreeSASA Open source command line tool, C library and Python module for calculating ASA.
Surface Racer Oleg Tsodikov's Surface Racer program. Solvent accessible and molecular surface area and average curvature calculation. Free for academic use.
ASA.py — a Python-based implementation of the Shrake-Rupley algorithm.