Van der Waals radius

van der Waals radii
Element radius (Å)
Hydrogen 1.2 (1.09)[1]
Carbon 1.7
Nitrogen 1.55
Oxygen 1.52
Fluorine 1.47
Phosphorus 1.8
Sulfur 1.8
Chlorine 1.75
Copper 1.4
van der Waals radii taken from
Bondi's compilation (1964).[2]
Values from other sources may
differ significantly (see text)

The van der Waals radius, rw, of an atom is the radius of an imaginary hard sphere representing the distance of closest approach for another atom. It is named after Johannes Diderik van der Waals, winner of the 1910 Nobel Prize in Physics, as he was the first to recognise that atoms were not simply points and to demonstrate the physical consequences of their size through the van der Waals equation of state.

van der Waals volume

The van der Waals volume, Vw, also called the atomic volume or molecular volume, is the atomic property most directly related to the van der Waals radius.[3] It is the volume "occupied" by an individual atom (or molecule). The van der Waals volume may be calculated if the van der Waals radii (and, for molecules, the inter-atomic distances, and angles) are known. For a single atom, it is the volume of a sphere whose radius is the van der Waals radius of the atom:

For a molecule, it is the volume enclosed by the van der Waals surface. The van der Waals volume of a molecule is always smaller than the sum of the van der Waals volumes of the constituent atoms: the atoms can be said to "overlap" when they form chemical bonds.

The van der Waals volume of an atom or molecule may also be determined by experimental measurements on gases, notably from the van der Waals constant b, the polarizability α, or the molar refractivity A. In all three cases, measurements are made on macroscopic samples and it is normal to express the results as molar quantities. To find the van der Waals volume of a single atom or molecule, it is necessary to divide by the Avogadro constant NA.

The molar van der Waals volume should not be confused with the molar volume of the substance. In general, at normal laboratory temperatures and pressures, the atoms or molecules of gas only occupy about 11000 of the volume of the gas, the rest is empty space. Hence the molar van der Waals volume, which only counts the volume occupied by the atoms or molecules, is usually about 1000 times smaller than the molar volume for a gas at standard temperature and pressure.

Table of van der Waals radii

Methods of determination

Van der Waals radii may be determined from the mechanical properties of gases (the original method), from the critical point, from measurements of atomic spacing between pairs of unbonded atoms in crystals or from measurements of electrical or optical properties (the polarizability and the molar refractivity). These various methods give values for the van der Waals radius which are similar (1–2 Å, 100–200 pm) but not identical. Tabulated values of van der Waals radii are obtained by taking a weighted mean of a number of different experimental values, and, for this reason, different tables will often have different values for the van der Waals radius of the same atom. Indeed, there is no reason to assume that the van der Waals radius is a fixed property of the atom in all circumstances: rather, it tends to vary with the particular chemical environment of the atom in any given case.[2]

Van der Waals equation of state

The van der Waals equation of state is the simplest and best-known modification of the ideal gas law to account for the behaviour of real gases: where p is pressure, n is the number of moles of the gas in question and a and b depend on the particular gas, is the volume, R is the specific gas constant on a unit mole basis and T the absolute temperature; a is a correction for intermolecular forces and b corrects for finite atomic or molecular sizes; the value of b equals the van der Waals volume per mole of the gas. Their values vary from gas to gas.

The van der Waals equation also has a microscopic interpretation: molecules interact with one another. The interaction is strongly repulsive at a very short distance, becomes mildly attractive at the intermediate range, and vanishes at a long distance. The ideal gas law must be corrected when attractive and repulsive forces are considered. For example, the mutual repulsion between molecules has the effect of excluding neighbors from a certain amount of space around each molecule. Thus, a fraction of the total space becomes unavailable to each molecule as it executes random motion. In the equation of state, this volume of exclusion (nb) should be subtracted from the volume of the container (V), thus: (V - nb). The other term that is introduced in the van der Waals equation, , describes a weak attractive force among molecules (known as the van der Waals force), which increases when n increases or V decreases and molecules become more crowded together.

Gas d (Å) b (cm3mol–1) Vw3) rw (Å)
Hydrogen 0.74611 26.61 34.53 2.02
Nitrogen 1.0975 39.13 47.71 2.25
Oxygen 1.208 31.83 36.62 2.06
Chlorine 1.988 56.22 57.19 2.39
van der Waals radii rw in Å (or in 100 picometers) calculated from the van der Waals constants
of some diatomic gases. Values of d and b from Weast (1981).

The van der Waals constant b volume can be used to calculate the van der Waals volume of an atom or molecule with experimental data derived from measurements on gases.

For helium,[6] b = 23.7 cm3/mol. Helium is a monatomic gas, and each mole of helium contains 6.022×1023 atoms (the Avogadro constant, NA): Therefore, the van der Waals volume of a single atom Vw = 39.36 Å3, which corresponds to rw = 2.11 Å (≈ 200 picometers). This method may be extended to diatomic gases by approximating the molecule as a rod with rounded ends where the diameter is 2rw and the internuclear distance is d. The algebra is more complicated, but the relation can be solved by the normal methods for cubic functions.

Crystallographic measurements

The molecules in a molecular crystal are held together by van der Waals forces rather than chemical bonds. In principle, the closest that two atoms belonging to different molecules can approach one another is given by the sum of their van der Waals radii. By examining a large number of structures of molecular crystals, it is possible to find a minimum radius for each type of atom such that other non-bonded atoms do not encroach any closer. This approach was first used by Linus Pauling in his seminal work The Nature of the Chemical Bond.[7] Arnold Bondi also conducted a study of this type, published in 1964,[2] although he also considered other methods of determining the van der Waals radius in coming to his final estimates. Some of Bondi's figures are given in the table at the top of this article, and they remain the most widely used "consensus" values for the van der Waals radii of the elements. Scott Rowland and Robin Taylor re-examined these 1964 figures in the light of more recent crystallographic data: on the whole, the agreement was very good, although they recommend a value of 1.09 Å for the van der Waals radius of hydrogen as opposed to Bondi's 1.20 Å.[1] A more recent analysis of the Cambridge Structural Database, carried out by Santiago Alvareza, provided a new set of values for 93 naturally occurring elements.[8]

A simple example of the use of crystallographic data (here neutron diffraction) is to consider the case of solid helium, where the atoms are held together only by van der Waals forces (rather than by covalent or metallic bonds) and so the distance between the nuclei can be considered to be equal to twice the van der Waals radius. The density of solid helium at 1.1 K and 66 atm is 0.214(6) g/cm3,[9] corresponding to a molar volume Vm = 18.7×10−6 m3/mol. The van der Waals volume is given by where the factor of π/√18 arises from the packing of spheres: Vw = 2.30×10−29 m3 = 23.0 Å3, corresponding to a van der Waals radius rw = 1.76 Å.

Molar refractivity

The molar refractivity A of a gas is related to its refractive index n by the Lorentz–Lorenz equation: The refractive index of helium n = 1.0000350 at 0 °C and 101.325 kPa,[10] which corresponds to a molar refractivity A = 5.23×10−7 m3/mol. Dividing by the Avogadro constant gives Vw = 8.685×10−31 m3 = 0.8685 Å3, corresponding to rw = 0.59 Å.

Polarizability

The polarizability α of a gas is related to its electric susceptibility χe by the relation and the electric susceptibility may be calculated from tabulated values of the relative permittivity εr using the relation χe = εr − 1. The electric susceptibility of helium χe = 7×10−5 at 0 °C and 101.325 kPa,[11] which corresponds to a polarizability α = 2.307×10−41 C⋅m2/V. The polarizability is related the van der Waals volume by the relation so the van der Waals volume of helium Vw = 2.073×10−31 m3 = 0.2073 Å3 by this method, corresponding to rw = 0.37 Å.

When the atomic polarizability is quoted in units of volume such as Å3, as is often the case, it is equal to the van der Waals volume. However, the term "atomic polarizability" is preferred as polarizability is a precisely defined (and measurable) physical quantity, whereas "van der Waals volume" can have any number of definitions depending on the method of measurement.

See also

References

  1. ^ a b c Rowland RS, Taylor R (1996). "Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii". J. Phys. Chem. 100 (18): 7384–7391. doi:10.1021/jp953141+.
  2. ^ a b c Bondi, A. (1964). "van der Waals Volumes and Radii". J. Phys. Chem. 68 (3): 441–451. doi:10.1021/j100785a001.
  3. ^ "Van der Waals Radii of Elements" (PDF).
  4. ^ a b c d e f g h i j k l m n o p q Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G. (2009). "Consistent van der Waals Radii for the Whole Main Group". The Journal of Physical Chemistry A. 113 (19): 5806–5812. Bibcode:2009JPCA..113.5806M. doi:10.1021/jp8111556. PMC 3658832. PMID 19382751.
  5. ^ "van der Waals Radius of the elements". Wolfram.
  6. ^ Weast, Robert C., ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, Florida: CRC Press. ISBN 0-8493-0462-8., p. D-166.
  7. ^ Pauling, Linus (1945). The Nature of the Chemical Bond. Ithaca, NY: Cornell University Press. ISBN 978-0-8014-0333-0.
  8. ^ Alvareza, Santiago (2013). "A cartography of the van der Waals territories". Dalton Trans. 42 (24): 8617–36. doi:10.1039/C3DT50599E. hdl:2445/48823. PMID 23632803.
  9. ^ Henshaw, D.G. (1958). "Structure of Solid Helium by Neutron Diffraction". Physical Review. 109 (2): 328–330. Bibcode:1958PhRv..109..328H. doi:10.1103/PhysRev.109.328.
  10. ^ Kaye & Laby Tables, Refractive index of gases.
  11. ^ Kaye & Laby Tables, Dielectric Properties of Materials.

Further reading

Read other articles:

Questa voce sull'argomento vessillologia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Flag of GuernseyProporzioni2:3 Simbolo FIAV ColoriGenerici      Bianco      Rosso      Oro UsoBandiera di stato e civile Tipologiaregionale Adozione30 aprile 1985 Nazione Guernsey Altre bandiere ufficialiBandiera del Governatore 1:2 Insegna ...

 

Untuk kegunaan lain, lihat Karangasem. Koordinat: 8°27′02″S 115°36′22″E / 8.450653°S 115.605973°E / -8.450653; 115.605973 KarangasemKecamatanPeta lokasi Kecamatan KarangasemNegara IndonesiaProvinsiBaliKabupatenKarangasemPemerintahan • CamatCokorda Alit Surya Prabawa, S.STP.[1]Populasi • Total97,584 jiwa (2.016)[2] 82,606 jiwa (2.010)[3] jiwaKode pos80811Kode Kemendagri51.07.04 Kode BPS5107040 Luas94,23 km...

 

Bergen, adalah sebuah gemeente Belanda yang terletak di provinsi Limburg. Pada tahun 2021 daerah ini memiliki penduduk sebesar 13.100 jiwa. Lihat pula Daftar Kota Belanda lbsMunisipalitas di provinsi Limburg Beek Beekdaelen Beesel Bergen Brunssum Echt-Susteren Eijsden-Margraten Gennep Gulpen-Wittem Heerlen Horst aan de Maas Kerkrade Landgraaf Leudal Maasgouw Maastricht Meerssen Mook en Middelaar Nederweert Peel en Maas Roerdalen Roermond Simpelveld Sittard-Geleen Stein Vaals Valkenburg aan d...

Untuk film dengan nama yang sama dengan nama julukan klub, lihat Bayi Ajaib (film 1982). Persikota TangerangNama lengkapPersatuan Sepakbola Indonesia Kota TangerangJulukanBayi AjaibBerdiri1994; 30 tahun lalu (1994)StadionStadion Benteng,Tangerang, Banten, Indonesia(Kapasitas: 15.000)Pemilik Prilly LatuconsinaPresiden/CEO Yopi sinagaBendahara H. Dedi MuchtarManajer Mahdiar, S.STPPelatih Sahala SaragihAsisten Pelatih Dedi SuhermanDokter Tim dr. Ricky PohanLigaLiga 3Kelompok suporter Benten...

 

In logic, a statement which is always true This article is about tautology in formal logic. For other uses, see Tautology (disambiguation). In mathematical logic, a tautology (from Greek: ταυτολογία) is a formula or assertion that is true in every possible interpretation. An example is x=y or x≠y. Similarly, either the ball is green, or the ball is not green is always true, regardless of the colour of the ball. The philosopher Ludwig Wittgenstein first applied the term to redundan...

 

Men's basketball team for Miami University Miami RedHawks 2023–24 Miami RedHawks men's basketball team UniversityMiami UniversityFirst season1899Head coachTravis SteeleConferenceMid-AmericanLocationOxford, OhioArenaMillett Hall (Capacity: 9,200)NicknameRedHawksColorsRed and white[1]   Uniforms Home Away NCAA tournament Sweet Sixteen1958, 1969, 1978, 1999NCAA tournament round of 321978, 1995, 1999NCAA tournament appearances1953, 1955, 1957, 1958, 1966, 1969, ...

إبراهيم قاسمبور   معلومات شخصية الاسم الكامل إبراهيم قاسمبور الميلاد 11 سبتمبر 1957 (العمر 66 سنة)عبادان، إيران الطول 170 سنتيمتر  مركز اللعب وسط الجنسية إيران  مسيرة الشباب سنوات فريق 1972–1974 صنعت نفط المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1974–1976 صنعت نفط 1976–1978 شاهباز 1978�...

 

Формула Ньютона-Лейбница (анимация) Формула Ньютона — Лейбница, или основная теорема анализа, даёт соотношение между двумя операциями: взятием интеграла Римана и вычислением первообразной. Содержание 1 Формулировка 2 История 3 Значение 4 Интеграл Лебега 5 Некоторые сл�...

 

Bulgarian footballer (born 1946) In this Bulgarian name, the patronymic is Lozanov and the family name is Ivkov. Kiril Ivkov Ivkov at the age of 28 in 1974Personal informationFull name Kiril Lozanov IvkovDate of birth (1946-06-21) 21 June 1946 (age 77)Place of birth Pernik, BulgariaHeight 1.79 m (5 ft 10 in)Position(s) DefenderSenior career*Years Team Apps (Gls)1962–1965 Metalurg Pernik 1965–1967 Minyor Pernik 63 (1)1967–1978 Levski Sofia 293 (9)1978–1979 Etar ...

Private secondary school in Kolkata, West Bengal, IndiaCalcutta Girls' High School2006 stamp dedicated to Calcutta Girls High SchoolAddress118, Princep StreetKolkata, West Bengal, 700071IndiaCoordinates22°34′06″N 88°21′10″E / 22.5684009°N 88.3528274°E / 22.5684009; 88.3528274InformationTypePrivate secondary schoolMottoDeus et Humanitas(Latin: God and Humanity)Established1856; 168 years ago (1856)FounderLord CanningSchool boardIndian Counc...

 

Branch of Freedom Democratic party during 1960s Civil Rights Movement Freedom Democratic Party redirects here. For the Liberty Democratic Party in Uzbekistan, see Erk Democratic Party. Mississippi Freedom Democratic Party/Freedom Democratic Party ChairpersonLawrence Guyot[1]Vice ChairpersonFannie Lou HamerFounded1964 (1964)Dissolved1968 (1968)Split fromMississippi Democratic PartyMerged intoMississippi Democratic PartyHeadquartersJackson, MississippiIdeologyCivil R...

 

Untuk jembatan akses dari halte ini, lihat Jembatan Penyeberangan Orang Pinisi Karet Sudirman. 108 Karet Halte TransjakartaHalte Karet setelah dilakukan revitalisasi pada Februari 2024LetakKotaJakarta SelatanDesa/kelurahanKaret, SetiabudiKodepos12920AlamatJalan Jenderal SudirmanKoordinat6°12′53″S 106°49′06″E / 6.214731°S 106.818265°E / -6.214731; 106.818265Koordinat: 6°12′53″S 106°49′06″E / 6.214731°S 106.818265°E / -6.21...

此條目目前正依照en:2022 United States House of Representatives elections上的内容进行翻译。 (2022年11月8日)如果您擅长翻译,並清楚本條目的領域,欢迎协助翻譯、改善或校对本條目。此外,长期闲置、未翻譯或影響閱讀的内容可能会被移除。 2022年美國眾議院選舉 ← 2020 2022年11月8日 2024 → 美國眾議院全部435個席位[a]獲得過半多數需218个席位   多數黨 少數黨 ...

 

50°28′48″N 3°33′47″W / 50.480°N 3.563°W / 50.480; -3.563 This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2009) (Learn how and when to remove this message)This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help impr...

 

Dutch economist (born 1963) Philippus Henricus Benedictus Franciscus Philip Hans Franses (born 1963) is a Dutch economist and Professor of Applied Econometrics and Marketing Research at the Erasmus University Rotterdam, and dean of the Erasmus School of Economics, especially known for his 1998 work on Nonlinear Time Series Models in Empirical Finance.[1][2] Biography Born in Wageningen, Franses studied econometrics at the University of Groningen, graduated in 1987, and receiv...

VatapáPlace of originBrazilMain ingredientsBread, shrimp, coconut milk, peanuts, palm oil  Media: Vatapá Vatapá (Yoruba: vata'pa, [vɐtɐˈpa]) is an Afro-Brazilian dish made from bread, shrimp, coconut milk, finely ground peanuts and palm oil mashed into a creamy paste. It is a typical food of Salvador, Bahia and it is also common to the North and Northeast regions of Brazil. In the northeastern state of Bahia it is commonly eaten with acarajé, and as a ritual offering i...

 

Keuskupan EnsenadaDioecesis SinuensisDiócesis de EnsenadaKatolik LokasiNegara MeksikoProvinsi gerejawiProvinsi TijuanaStatistikLuas20.334 sq mi (52.660 km2)Populasi- Total- Katolik(per 2007)658.899621,346 (94.3%)Paroki23InformasiDenominasiKatolik RomaRitusRitus RomaPendirian26 Januari 2007 (17 tahun lalu)KatedralKatedral Bunda dari GuadalupeKepemimpinan kiniPausFransiskusUskupRafael Valdéz TorresUskup agungRafael Romo MuñozPetaSitus webdiocesisensena...

 

この項目では、古代の隼人について説明しています。その他の用法については「隼人 (曖昧さ回避)」をご覧ください。 隼人の楯 隼人(はやと)とは、古代日本において、阿多・大隅(現在の鹿児島県本土部分)に居住したとされる人々[1]。 概要 隼人駅前に展示された隼人の盾 日本神話には海幸彦が隼人の阿多君の始祖であり、祖神火照命の末裔であるとされる...

American naval vessel As USS American Legion c. 1944–45 History United States NameAmerican Legion NamesakeThe American Legion, a patriotic organization BuilderNew York Shipbuilding Cost$7,309,189.37[3] Yard number242[2] Launched11 October 1919[1] Sponsored byMrs. Joseph S. Frelinghuysen ChristenedAmerican Legion Acquired(by the Navy) 22 August 1941 Commissioned(Navy) 26 August 1941 Decommissioned(Navy) 20 March 1946 Maiden voyage23 July 1921 ReclassifiedAP-35 to...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) سيمون لافي معلومات شخصية الميلاد 12 مايو 1949 (75 سنة)  أمستردام[1]  مواطنة الولايات المتحدة  الحياة العملية المواضيع مسرح،  ودراما  المهنة مخرج م...