Eccentricity (mathematics)

A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity is an infinitesimally separated pair of lines.
A circle of finite radius has an infinitely distant directrix, while a pair of lines of finite separation have an infinitely distant focus.

In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.

One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular:

  • The eccentricity of a circle is 0.
  • The eccentricity of an ellipse which is not a circle is between 0 and 1.
  • The eccentricity of a parabola is 1.
  • The eccentricity of a hyperbola is greater than 1.
  • The eccentricity of a pair of lines is

Two conic sections with the same eccentricity are similar.

Definitions

Plane section of a cone

Any conic section can be defined as the locus of points whose distances to a point (the focus) and a line (the directrix) are in a constant ratio. That ratio is called the eccentricity, commonly denoted as e.

The eccentricity can also be defined in terms of the intersection of a plane and a double-napped cone associated with the conic section. If the cone is oriented with its axis vertical, the eccentricity is[1]

where β is the angle between the plane and the horizontal and α is the angle between the cone's slant generator and the horizontal. For the plane section is a circle, for a parabola. (The plane must not meet the vertex of the cone.)

The linear eccentricity of an ellipse or hyperbola, denoted c (or sometimes f or e), is the distance between its center and either of its two foci. The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a: that is, (lacking a center, the linear eccentricity for parabolas is not defined). It is worth to note that a parabola can be treated as an ellipse or a hyperbola, but with one focal point at infinity.

Alternative names

The eccentricity is sometimes called the first eccentricity to distinguish it from the second eccentricity and third eccentricity defined for ellipses (see below). The eccentricity is also sometimes called the numerical eccentricity.

In the case of ellipses and hyperbolas the linear eccentricity is sometimes called the half-focal separation.

Notation

Three notational conventions are in common use:

  1. e for the eccentricity and c for the linear eccentricity.
  2. ε for the eccentricity and e for the linear eccentricity.
  3. e or ϵ< for the eccentricity and f for the linear eccentricity (mnemonic for half-focal separation).

This article uses the first notation.

Values

Standard form

Conic section Equation Eccentricity (e) Linear eccentricity (c)
Circle
Ellipse or where
Parabola undefined ()
Hyperbola or

Here, for the ellipse and the hyperbola, a is the length of the semi-major axis and b is the length of the semi-minor axis.

General form

When the conic section is given in the general quadratic form

the following formula gives the eccentricity e if the conic section is not a parabola (which has eccentricity equal to 1), not a degenerate hyperbola or degenerate ellipse, and not an imaginary ellipse:[2]

where if the determinant of the 3×3 matrix

is negative or if that determinant is positive.

Ellipse and hyperbola with constant a and changing eccentricity e.

Ellipses

The eccentricity of an ellipse is strictly less than 1. When circles (which have eccentricity 0) are counted as ellipses, the eccentricity of an ellipse is greater than or equal to 0; if circles are given a special category and are excluded from the category of ellipses, then the eccentricity of an ellipse is strictly greater than 0.

For any ellipse, let a be the length of its semi-major axis and b be the length of its semi-minor axis. In the coordinate system with origin at the ellipse's center and x-axis aligned with the major axis, points on the ellipse satisfy the equation

with foci at coordinates for

We define a number of related additional concepts (only for ellipses):

Name Symbol in terms of a and b in terms of e
First eccentricity
Second eccentricity
Third eccentricity
Angular eccentricity
First eccentricity e in terms of semi-major a and semi-minor b axes: e² + (b/a)² = 1

Other formulae for the eccentricity of an ellipse

The eccentricity of an ellipse is, most simply, the ratio of the linear eccentricity c (distance between the center of the ellipse and each focus) to the length of the semimajor axis a.

The eccentricity is also the ratio of the semimajor axis a to the distance d from the center to the directrix:

The eccentricity can be expressed in terms of the flattening f (defined as for semimajor axis a and semiminor axis b):

(Flattening may be denoted by g in some subject areas if f is linear eccentricity.)

Define the maximum and minimum radii and as the maximum and minimum distances from either focus to the ellipse (that is, the distances from either focus to the two ends of the major axis). Then with semimajor axis a, the eccentricity is given by

which is the distance between the foci divided by the length of the major axis.

Hyperbolas

The eccentricity of a hyperbola can be any real number greater than 1, with no upper bound. The eccentricity of a rectangular hyperbola is .

Quadrics

Ellipses, hyperbolas with all possible eccentricities from zero to infinity and a parabola on one cubic surface.

The eccentricity of a three-dimensional quadric is the eccentricity of a designated section of it. For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in the equatorial plane). But: conic sections may occur on surfaces of higher order, too (see image).

Celestial mechanics

In celestial mechanics, for bound orbits in a spherical potential, the definition above is informally generalized. When the apocenter distance is close to the pericenter distance, the orbit is said to have low eccentricity; when they are very different, the orbit is said be eccentric or having eccentricity near unity. This definition coincides with the mathematical definition of eccentricity for ellipses, in Keplerian, i.e., potentials.

Analogous classifications

A number of classifications in mathematics use derived terminology from the classification of conic sections by eccentricity:

See also

References

  1. ^ Thomas, George B.; Finney, Ross L. (1979), Calculus and Analytic Geometry (fifth ed.), Addison-Wesley, p. 434. ISBN 0-201-07540-7
  2. ^ Ayoub, Ayoub B., "The eccentricity of a conic section", The College Mathematics Journal 34(2), March 2003, 116-121.
  3. ^ "Classification of Linear PDEs in Two Independent Variables". Retrieved 2 July 2013.

Read other articles:

Vitantonio LiuzziVitantonio Liuzzi di Grand Prix Malaysia 2011.Lahir6 Agustus 1980 (umur 43) Locorotondo, ItaliaKarier Kejuaraan Dunia Formula SatuKebangsaan ItaliaTahun aktif2005–2007, 2009–2011TimRed Bull, Toro Rosso, Force India, Hispania RacingJumlah lomba81 (80 start)Juara dunia0Menang0Podium0Total poin26Posisi pole0Lap tercepat0Lomba pertamaGrand Prix San Marino 2005Lomba terakhirGrand Prix Brasil 2011Karier Formula EMusim debut2014–15Tim saat iniTrulli GPNomor mobil10Start5H...

 

Henri Saivet Informasi pribadiNama lengkap Henri SaivetTanggal lahir 26 Oktober 1990 (umur 33)Tempat lahir Dakar, SenegalTinggi 1,75 m (5 ft 9 in)[1]Posisi bermain PenyerangInformasi klubKlub saat ini BordeauxNomor 20Karier junior1999–2002 Cergy Clos2002–2007 BordeauxKarier senior*Tahun Tim Tampil (Gol)2007– Bordeaux 41 (3)2011 → Angers (pinjaman) 18 (3)Tim nasional‡2005–2006 Prancis U-16 15 (8)2006–2007 Prancis U-17 21 (8)2007–2008 Prancis U-18 4 ...

 

Arjun KapoorKapoor di sebuah acara promosional untuk film MubarakanLahir26 Juni 1985 (umur 38)[1]Mumbai, Maharashtra, IndiaPekerjaanPemeranTahun aktif2012–sekarangOrang tuaBoney Kapoor (ayah) Mona Shourie Kapoor (ibu)KerabatLihat Keluarga Kapoor Arjun Kapoor (pelafalan [ɐrˈɟun kəˈpuːr]; lahir 26 Juni 1985) adalah seorang pemeran India yang tampil dalam perfilman Bollywood. Ia adalah putra dari produser film Boney Kapoor dan Mona Shourie Kapoor. Setelah berka...

Departments of Peru Department in 4 provinces and 26 districts, PeruTacna Departamento de Tacna (Spanish)Taqna jach'a suyu (Aymara)DepartmentTutupaca Volcano in the Andes FlagSealLocation of the Tacna Region in PeruCoordinates: 17°36′S 70°12′W / 17.6°S 70.2°W / -17.6; -70.2CountryPeruSubdivisions4 provinces and 26 districtsCapitalTacnaGovernment • GovernorJuan Tonconi Quispe(2019–2022)Area • Total16,075.89 km2 (6,206.94 sq...

 

كيم ميلتون نيلسن معلومات شخصية الميلاد 3 أغسطس 1960 (العمر 63 سنة)كوبنهاغن مواطنة مملكة الدنمارك  الحياة العملية المهنة حكم كرة قدم  الرياضة كرة القدم  بلد الرياضة الدنمارك  تعديل مصدري - تعديل   كيم ميلتون نيلسن (بالدنماركية: Kim Milton Nielsen)‏، من مواليد 3 أغسطس 1960 في كو...

 

Dolores HuertaDolores Huerta en 2017.BiographieNaissance 10 avril 1930 (94 ans)Dawson (Nouveau-Mexique)Nom de naissance FernándezNationalité américaineFormation San Joaquin Delta College (en)Université du PacifiqueStockton High School (en)Activités Syndicaliste, militanteAutres informationsMembre de Socialistes démocrates d'AmériquePersonnes liées César Chávez, Philip Vera Cruz (en), Larry Itliong (en)Distinctions Liste détailléeEugene V. Debs Award (en) (1993)National Women'...

Irish footballer Danny O'Connor O'Connor in action for Shamrock RoversPersonal informationFull name Daniel O'ConnorDate of birth (1980-09-28) 28 September 1980 (age 43)Place of birth Dublin, IrelandHeight 1.88 m (6 ft 2 in)Position(s) Centre backMidfielderSenior career*Years Team Apps (Gls)1999–2001 Bray Wanderers 9 (0)2001–2005 Drogheda United 123 (8)2005–2006 Longford Town 58 (2)2007–2008 Shamrock Rovers 54 (1)2009–2010 Newry City 11 (0)2010–2014 Bray Wandere...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Hadi Mahdami sang Maestro musik gambus Indonesia. Abdul Hadi Mahdami (alias Ami Hadi alias Adun Hulu 17 Juni 1917 – 12 April 2004) merupakan seniman dan musisi musik gambus Melayu yang terkenal di kalangan keturunan Hadramaut di Indone...

 

Víctor Griffith Nazionalità  Panama Altezza 174 cm Peso 75 kg Calcio Ruolo Difensore Squadra  Árabe Unido CarrieraSquadre di club1 2016-2018 Tauro2 (0)2018-2021 Santos de Guápiles43 (0)2021-2022 Árabe Unido27 (1)2022-2023 Portland Timbers U2341 (2)2022-2023 Portland Timbers1 (0)2024- Árabe Unido0 (0)Nazionale 2017 Panama U-175 (0)2018-2019 Panama U-2010 (0)2020- Panama1 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole partit...

Motorway and road in Leeds, England A64(M)Route informationLength0.5 mi (800 m)Existed1969–presentMajor junctionsEast endQuarry HillMajor intersectionsWest endBrunswick LocationCountryUnited KingdomConstituent countryEnglandPrimarydestinationsLeeds Road network Roads in the United Kingdom Motorways A and B road zones ← A58(M)→ A66(M) A58(M)Route informationLength2.0 mi (3.2 km)Existed1964–presentHistoryConstructed 1964–75Major junctionsEast...

 

Resolusi 1000Dewan Keamanan PBBPembagian SiprusTanggal23 Juni 1995Sidang no.3.547KodeS/RES/1000 (Dokumen)TopikSiprusRingkasan hasil15 mendukungTidak ada menentangTidak ada abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Rusia Britania Raya Amerika SerikatAnggota tidak tetap Argentina Botswana Republik Ceko Jerman Honduras Indonesia Italia Nigeria Oman Rwanda Resolusi 1000 Dewan Keam...

 

Kembang Cakra merupakan simbol Sunda Wiwitan.JenisAgama asli NusantaraKitab suciKitab Sanghyang Siksa Kandang KaresianTeologiMonoteismePerhimpunanPaguyuban Adat Karuhun Urang[1]Wilayah • Jawa BaratKabupaten BogorKabupaten KuninganKabupaten Sukabumi • BantenKabupaten LebakKabupaten PandeglangBahasaSundaBaduiKantor pusatJawa BaratJumlah pengikut± 50.000 jiwa[2][3] Artikel ini adalah bagian dari seriAgama asli Nusantara Sumatra Ugamo Malim • Pemena&#...

Fictional character from The Godfather series Fictional character Don FanucciGastone Moschin as Don FanucciFirst appearanceThe GodfatherLast appearanceThe Godfather Part IICreated byMario PuzoPortrayed byGastone MoschinIn-universe informationNicknameDon FanucciGenderMaleOccupationExtortioner, mobsterFamilyBlack Hand Don Fanucci is a fictional character appearing in Mario Puzo's 1969 novel The Godfather and the 1974 film The Godfather Part II, a sequel to the 1972 film version of Puzo's novel....

 

American football player (1932–1993) Don DohoneyDohoney from The 1954 WolverineBorn:March 4, 1932Died:July 4, 1993(1993-07-04) (aged 61)Meridian, Michigan, U.S.Career informationPosition(s)EndCollegeMichigan State CollegeNFL draft1954, Round: 5, Pick: 50Drafted byChicago CardinalsCareer historyAs player1953Michigan St. Spartans Career highlights and awards Consensus All-American (1953) First-team All-Big Ten (1953) Donald Clay Dohoney (March 4, 1932 – July 4, 1993...

 

P.70 Pottier P.170S Role Sport aircraftType of aircraft National origin France Manufacturer Homebuilt Designer Jean Pottier First flight 1970s The Pottier P.70 was a single-seat, single-engine sport aircraft developed in France in the 1970s and marketed for homebuilding.[1] It was a mid-wing cantilever monoplane of conventional design with an enclosed cockpit.[2] Originally designed with fixed, tricycle undercarriage, the plans were later revised to offer a fixed, tailwheel o...

  لمعانٍ أخرى، طالع دانيال برات (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) دانيال برات   معلومات شخصية الميلاد 20 يوليو 1799   تاريخ الوفاة 13 مايو 1873 (73 سنة)   مواطنة الولايات المتحدة ...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Осн�...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mitsubishi Fuso Rosa – news · newspapers · books · scholar · JSTOR (November 2018) (Learn how and when to remove this message) Motor vehicle Mitsubishi Fuso RosaFuso Rosa as a Hong Kong minibusOverviewManufacturerMitsubishi Motors (1970–2003) MFTBC (since 200...

 

German actor Bernhard MinettiMinetti in 1934Born(1905-01-26)26 January 1905Kiel, Kingdom of Prussia, German EmpireDied12 October 1998(1998-10-12) (aged 93)Berlin, GermanyOccupationActorYears active1931–1996 Bernhard Theodor Henry Minetti (26 January 1905 – 12 October 1998) was a German actor. He appeared in 50 films between 1931 and 1996 but is mostly known for his distinguished stage career.[1] Selected filmography The Murderer Dimitri Karamazov (1930) as Ivan Karam...