Share to: share facebook share twitter share wa share telegram print page

SL2(R)

In mathematics, the special linear group SL(2, R) or SL2(R) is the group of 2 × 2 real matrices with determinant one:

It is a connected non-compact simple real Lie group of dimension 3 with applications in geometry, topology, representation theory, and physics.

SL(2, R) acts on the complex upper half-plane by fractional linear transformations. The group action factors through the quotient PSL(2, R) (the 2 × 2 projective special linear group over R). More specifically,

PSL(2, R) = SL(2, R) / {±I},

where I denotes the 2 × 2 identity matrix. It contains the modular group PSL(2, Z).

Also closely related is the 2-fold covering group, Mp(2, R), a metaplectic group (thinking of SL(2, R) as a symplectic group).

Another related group is SL±(2, R), the group of real 2 × 2 matrices with determinant ±1; this is more commonly used in the context of the modular group, however.

Descriptions

SL(2, R) is the group of all linear transformations of R2 that preserve oriented area. It is isomorphic to the symplectic group Sp(2, R) and the special unitary group SU(1, 1). It is also isomorphic to the group of unit-length coquaternions. The group SL±(2, R) preserves unoriented area: it may reverse orientation.

The quotient PSL(2, R) has several interesting descriptions, up to Lie group isomorphism:

Elements of the modular group PSL(2, Z) have additional interpretations, as do elements of the group SL(2, Z) (as linear transforms of the torus), and these interpretations can also be viewed in light of the general theory of SL(2, R).

Homographies

Elements of PSL(2, R) are homographies on the real projective line R ∪ {∞}:

These projective transformations form a subgroup of PSL(2, C), which acts on the Riemann sphere by Möbius transformations.

When the real line is considered the boundary of the hyperbolic plane, PSL(2, R) expresses hyperbolic motions.

Möbius transformations

Elements of PSL(2, R) act on the complex plane by Möbius transformations:

This is precisely the set of Möbius transformations that preserve the upper half-plane. It follows that PSL(2, R) is the group of conformal automorphisms of the upper half-plane. By the Riemann mapping theorem, it is also isomorphic to the group of conformal automorphisms of the unit disc.

These Möbius transformations act as the isometries of the upper half-plane model of hyperbolic space, and the corresponding Möbius transformations of the disc are the hyperbolic isometries of the Poincaré disk model.

The above formula can be also used to define Möbius transformations of dual and double (aka split-complex) numbers. The corresponding geometries are in non-trivial relations[1] to Lobachevskian geometry.

Adjoint representation

The group SL(2, R) acts on its Lie algebra sl(2, R) by conjugation (remember that the Lie algebra elements are also 2 × 2 matrices), yielding a faithful 3-dimensional linear representation of PSL(2, R). This can alternatively be described as the action of PSL(2, R) on the space of quadratic forms on R2. The result is the following representation:

The Killing form on sl(2, R) has signature (2,1), and induces an isomorphism between PSL(2, R) and the Lorentz group SO+(2,1). This action of PSL(2, R) on Minkowski space restricts to the isometric action of PSL(2, R) on the hyperboloid model of the hyperbolic plane.

Classification of elements

The eigenvalues of an element A ∈ SL(2, R) satisfy the characteristic polynomial

and therefore

This leads to the following classification of elements, with corresponding action on the Euclidean plane:

  • If , then A is called elliptic, and is conjugate to a rotation.
  • If , then A is called parabolic, and is a shear mapping.
  • If , then A is called hyperbolic, and is a squeeze mapping.

The names correspond to the classification of conic sections by eccentricity: if one defines eccentricity as half the absolute value of the trace (ε = 1/2 |tr|; dividing by 2 corrects for the effect of dimension, while absolute value corresponds to ignoring an overall factor of ±1 such as when working in PSL(2, R)), then this yields: , elliptic; , parabolic; , hyperbolic.

The identity element 1 and negative identity element −1 (in PSL(2, R) they are the same), have trace ±2, and hence by this classification are parabolic elements, though they are often considered separately.

The same classification is used for SL(2, C) and PSL(2, C) (Möbius transformations) and PSL(2, R) (real Möbius transformations), with the addition of "loxodromic" transformations corresponding to complex traces; analogous classifications are used elsewhere.

A subgroup that is contained with the elliptic (respectively, parabolic, hyperbolic) elements, plus the identity and negative identity, is called an elliptic subgroup (respectively, parabolic subgroup, hyperbolic subgroup).

The trichotomy of SL(2, R) into elliptic, parabolic, and hyperbolic elements is a classification into subsets, not subgroups: these sets are not closed under multiplication (the product of two parabolic elements need not be parabolic, and so forth). However, each element is conjugate to a member of one of 3 standard one-parameter subgroups (possibly times ±1), as detailed below.

Topologically, as trace is a continuous map, the elliptic elements (excluding ±1) form an open set, as do the hyperbolic elements (excluding ±1). By contrast, the parabolic elements, together with ±1, form a closed set that is not open.

Elliptic elements

The eigenvalues for an elliptic element are both complex, and are conjugate values on the unit circle. Such an element is conjugate to a rotation of the Euclidean plane – they can be interpreted as rotations in a possibly non-orthogonal basis – and the corresponding element of PSL(2, R) acts as (conjugate to) a rotation of the hyperbolic plane and of Minkowski space.

Elliptic elements of the modular group must have eigenvalues {ω, ω−1}, where ω is a primitive 3rd, 4th, or 6th root of unity. These are all the elements of the modular group with finite order, and they act on the torus as periodic diffeomorphisms.

Elements of trace 0 may be called "circular elements" (by analogy with eccentricity) but this is rarely done; they correspond to elements with eigenvalues ±i, and are conjugate to rotation by 90°, and square to -I: they are the non-identity involutions in PSL(2).

Elliptic elements are conjugate into the subgroup of rotations of the Euclidean plane, the special orthogonal group SO(2); the angle of rotation is arccos of half of the trace, with the sign of the rotation determined by orientation. (A rotation and its inverse are conjugate in GL(2) but not SL(2).)

Parabolic elements

A parabolic element has only a single eigenvalue, which is either 1 or -1. Such an element acts as a shear mapping on the Euclidean plane, and the corresponding element of PSL(2, R) acts as a limit rotation of the hyperbolic plane and as a null rotation of Minkowski space.

Parabolic elements of the modular group act as Dehn twists of the torus.

Parabolic elements are conjugate into the 2 component group of standard shears × ±I: . In fact, they are all conjugate (in SL(2)) to one of the four matrices , (in GL(2) or SL±(2), the ± can be omitted, but in SL(2) it cannot).

Hyperbolic elements

The eigenvalues for a hyperbolic element are both real, and are reciprocals. Such an element acts as a squeeze mapping of the Euclidean plane, and the corresponding element of PSL(2, R) acts as a translation of the hyperbolic plane and as a Lorentz boost on Minkowski space.

Hyperbolic elements of the modular group act as Anosov diffeomorphisms of the torus.

Hyperbolic elements are conjugate into the 2 component group of standard squeezes × ±I: ; the hyperbolic angle of the hyperbolic rotation is given by arcosh of half of the trace, but the sign can be positive or negative: in contrast to the elliptic case, a squeeze and its inverse are conjugate in SL₂ (by a rotation in the axes; for standard axes, a rotation by 90°).

Conjugacy classes

By Jordan normal form, matrices are classified up to conjugacy (in GL(n, C)) by eigenvalues and nilpotence (concretely, nilpotence means where 1s occur in the Jordan blocks). Thus elements of SL(2) are classified up to conjugacy in GL(2) (or indeed SL±(2)) by trace (since determinant is fixed, and trace and determinant determine eigenvalues), except if the eigenvalues are equal, so ±I and the parabolic elements of trace +2 and trace -2 are not conjugate (the former have no off-diagonal entries in Jordan form, while the latter do).

Up to conjugacy in SL(2) (instead of GL(2)), there is an additional datum, corresponding to orientation: a clockwise and counterclockwise (elliptical) rotation are not conjugate, nor are a positive and negative shear, as detailed above; thus for absolute value of trace less than 2, there are two conjugacy classes for each trace (clockwise and counterclockwise rotations), for absolute value of the trace equal to 2 there are three conjugacy classes for each trace (positive shear, identity, negative shear), and for absolute value of the trace greater than 2 there is one conjugacy class for a given trace.

Iwasawa or KAN decomposition

The Iwasawa decomposition of a group is a method to construct the group as a product of three Lie subgroups K, A, N. For these three subgroups are

These three elements are the generators of the Elliptic, Hyperbolic, and Parabolic subsets respectively.

Topology and universal cover

As a topological space, PSL(2, R) can be described as the unit tangent bundle of the hyperbolic plane. It is a circle bundle, and has a natural contact structure induced by the symplectic structure on the hyperbolic plane. SL(2, R) is a 2-fold cover of PSL(2, R), and can be thought of as the bundle of spinors on the hyperbolic plane.

The fundamental group of SL(2, R) is the infinite cyclic group Z. The universal covering group, denoted , is an example of a finite-dimensional Lie group that is not a matrix group. That is, admits no faithful, finite-dimensional representation.

As a topological space, is a line bundle over the hyperbolic plane. When imbued with a left-invariant metric, the 3-manifold becomes one of the eight Thurston geometries. For example, is the universal cover of the unit tangent bundle to any hyperbolic surface. Any manifold modeled on is orientable, and is a circle bundle over some 2-dimensional hyperbolic orbifold (a Seifert fiber space).

The braid group B3 is the universal central extension of the modular group.

Under this covering, the preimage of the modular group PSL(2, Z) is the braid group on 3 generators, B3, which is the universal central extension of the modular group. These are lattices inside the relevant algebraic groups, and this corresponds algebraically to the universal covering group in topology.

The 2-fold covering group can be identified as Mp(2, R), a metaplectic group, thinking of SL(2, R) as the symplectic group Sp(2, R).

The aforementioned groups together form a sequence:

However, there are other covering groups of PSL(2, R) corresponding to all n, as n Z < Z ≅ π1 (PSL(2, R)), which form a lattice of covering groups by divisibility; these cover SL(2, R) if and only if n is even.

Algebraic structure

The center of SL(2, R) is the two-element group {±1}, and the quotient PSL(2, R) is simple.

Discrete subgroups of PSL(2, R) are called Fuchsian groups. These are the hyperbolic analogue of the Euclidean wallpaper groups and Frieze groups. The most famous of these is the modular group PSL(2, Z), which acts on a tessellation of the hyperbolic plane by ideal triangles.

The circle group SO(2) is a maximal compact subgroup of SL(2, R), and the circle SO(2) / {±1} is a maximal compact subgroup of PSL(2, R).

The Schur multiplier of the discrete group PSL(2, R) is much larger than Z, and the universal central extension is much larger than the universal covering group. However these large central extensions do not take the topology into account and are somewhat pathological.

Representation theory

SL(2, R) is a real, non-compact simple Lie group, and is the split-real form of the complex Lie group SL(2, C). The Lie algebra of SL(2, R), denoted sl(2, R), is the algebra of all real, traceless 2 × 2 matrices. It is the Bianchi algebra of type VIII.

The finite-dimensional representation theory of SL(2, R) is equivalent to the representation theory of SU(2), which is the compact real form of SL(2, C). In particular, SL(2, R) has no nontrivial finite-dimensional unitary representations. This is a feature of every connected simple non-compact Lie group. For outline of proof, see non-unitarity of representations.

The infinite-dimensional representation theory of SL(2, R) is quite interesting. The group has several families of unitary representations, which were worked out in detail by Gelfand and Naimark (1946), V. Bargmann (1947), and Harish-Chandra (1952).

See also

References

  1. ^ Kisil, Vladimir V. (2012). Geometry of Möbius transformations. Elliptic, parabolic and hyperbolic actions of SL(2,R). London: Imperial College Press. p. xiv+192. doi:10.1142/p835. ISBN 978-1-84816-858-9. MR 2977041.

Read other articles:

2009 American adventure comedy film Year OneTheatrical release posterDirected byHarold RamisScreenplay byHarold RamisGene StupnitskyLee EisenbergStory byHarold RamisProduced byHarold RamisJudd ApatowClayton TownsendStarring Jack Black Michael Cera Oliver Platt David Cross Hank Azaria CinematographyAlar KiviloEdited byCraig HerringSteve WelchMusic byTheodore ShapiroProductioncompaniesColumbia PicturesThe Apatow CompanyOcean PicturesDistributed bySony Pictures ReleasingRelease date June 19,&#…

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Memorial Sloan-Kettering Cancer Center – berita · surat kabar · buku · cendekiawan · JSTOR (November 2007) Memorial Hospital, di kampus MSKCC saat ini, 1275 York Ave. Memorial Sloan–Kettering Cancer Center (MS…

عجايب يا زمنمعلومات عامةالصنف الفني دراماتاريخ الصدور 16 أكتوبر 1974 مدة العرض 150 دقيقةاللغة الأصلية العربيةمأخوذ عن شرق عدن البلد مصر الطاقمالمخرج حسن الإمام الكاتب حسن الإمامالسيناريو أحمد صالح البطولة  القائمة ... هند رستم يحيى شاهين ميرڤت امين حسن يوسف صلاح قابيل سيد زي

العلاقات الإثيوبية السويسرية إثيوبيا سويسرا   إثيوبيا   سويسرا تعديل مصدري - تعديل   العلاقات الإثيوبية السويسرية هي العلاقات الثنائية التي تجمع بين إثيوبيا وسويسرا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارن…

Avataro Sentai DonbrothersGenreTokusatsuFiksi pahlawan superKomediDramaFiksi persilanganPembuatTV AsahiToei CompanyPengembangToshiki InoueSutradaraRyuta TasakiPemeranKouhei HiguchiYuuki BeppuKohaku ShidaTotaroHirofumi SuzukiRaizou IshikawaKiita KomagineSōkō WadaYuya TominagaAmisa MiyazakiShinnosuke TakahashiTomoki HiroseMana TakaiShin KoyanagiMomoko ArataLagu pembukaOre koso Only Oneoleh Win MorisakiLagu penutupDon't Boo!, Donbrothersoleh Win MorisakiNegara asalJepangBahasa asliBahasa JepangJm…

Tadschikistan Tadschikische Botschaft in BerlinСафорати Ҷумҳурии Тоҷикистон Logo Staatliche Ebene bilateral Stellung der Behörde Botschaft Aufsichts­behörde(n) Außenministerium Bestehen seit 1992 Hauptsitz Deutschland Berlin, Perleberger Straße 43 Botschafter Imomudin Sattorov(seit Februar 2022) Mitarbeiter 5 Website www.botschaft-tadschikistan.de Botschaftsgebäude, Ansicht von der Perleberger Straße (2019) Die tadschikische Botschaft in Berlin ist …

БелланжBellange   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Саррбур-Шато-Сален Кантон Шато-Сален Код INSEE 57059 Поштові індекси 57340 Координати 48°54′09″ пн. ш. 6°34′42″ сх. д.H G O Висота 217 - 327 м.н.р.м. Площа 3,83 км² Населення 53 (01-2020[1]) Густота 15,14 ос.…

American country musician and songwriter (born 1982) Dave HaywoodHaywood in 2012Background informationBirth nameDavid Wesley HaywoodBorn (1982-07-05) July 5, 1982 (age 41)Augusta, Georgia, U.S.GenresCountrycountry popOccupation(s)MusiciansongwriterInstrument(s)GuitarvocalspianomandolinbouzoukiukulelebanjoharmonicaYears active2006 – presentLabelsCapitol NashvilleMember ofLady AWebsitewww.ladyamusic.comMusical artist David Wesley Haywood (born July 5, 1982)[1] is an American country…

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 14 de junio de 2012. Bajo Aragón CaspeDatos generalesNombre Asociación Deportiva Fútbol Sala CaspeFundación 1983Presidente Manuel Barriendos GimenoEntrenador José Luis DomingoInstalacionesEstadio Municipal de Caspe, (Zaragoza) EspañaCapacidad 1000 Titular Alternativo Última temporadaLiga Segunda División de fútbol sala(2006-07) 10.º Página web oficial[editar datos …

غراتس    شعار الاسم الرسمي (بالألمانية: Graz)‏    الإحداثيات 47°04′15″N 15°26′19″E / 47.070833333333°N 15.438611111111°E / 47.070833333333; 15.438611111111  [1] تقسيم إداري  البلد النمسا (27 يوليو 1955–) النمسا تحت الاحتلال السوفيتي (9 مايو 1945–26 يوليو 1955) ألمانيا النازية (12 مارس 1938–8 ماي

1966 compilation album by Various artistsLove, Strings and JobimCompilation album by Various artistsReleased1966Recorded1966GenreLatin Jazz, Bossa NovaLength30:30LabelWarner Bros.ProducerAloísio de Oliveira, Ray Gilbert Professional ratingsReview scoresSourceRatingAllmusic[1] Love, Strings and Jobim is a 1966 album by various Brazilian artists who play new Brazilian songs by various composers. Because Antônio Carlos Jobim is pictured on the cover and mentioned in the title, he …

Elena Burkard Burkard beim Great Edinburgh InternationalCross Country 2018 Nation Deutschland Deutschland Geburtstag 10. Februar 1992 (31 Jahre) Geburtsort Freudenstadt, Deutschland Größe 167 cm Gewicht 52 kg Beruf Bachelor (Chemie), Masterstudentin (Chemie) Karriere Disziplin 3000 m Hindernis, Mittel-, Langstrecken-und Crosslauf Verein LG farbtex Nordschwarzwald, ersterVerein: SV Mitteltal-Obertal Trainer Jörg Müller, vorm.: Helen Lehmann-Winters (USA), erster Trainer: Frank Möhr…

所沢市 > トコろん トコろんTOKORON対象 日本埼玉県所沢市分類 市町村のマスコットキャラクターモチーフ ヒバリ · 飛行機 · 狭山茶デザイン 市民公募(竹浪かおる)指定日 2010年11月3日指定者 所沢市長関連グッズ 関連グッズを参照備考 所沢市に特別住民登録[1]公式サイト 所沢市イメージマスコット「トコろん」テンプレートを表示 トコろ

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne s'appuie pas, ou pas assez, sur des sources secondaires ou tertiaires (janvier 2013). Pour améliorer la vérifiabilité de l'article ainsi que son intérêt encyclopédique, il est nécessaire, quand des sources primaires sont citées, de les associer à des analyses faites par des sources secondaires. Couvent des Guillemins de Liège 1649 : devant l'église Sainte-Véronique et le couvent des s…

2015 Honda Indy TorontoRace details9th round of the 2015 IndyCar Series seasonDateJune 14, 2015Official nameHonda Indy TorontoLocationExhibition PlaceCourseTemporary road course1.755 mi / 2.824 kmDistance85 laps149.175 mi / 240.04 kmWeatherWet with temperatures reaching up to 22.3 °C (72.1 °F); dropping to 17.8 °C (64.0 °F) by the end of the event[1]Pole positionDriverWill Power (Team Penske)Time59.4280Fastest lapDriverHélio Castroneves (Team Pensk…

See also: 1980 Major League Baseball season and 1980 Nippon Professional Baseball season The following are the baseball events of the year 1980 throughout the world. Overview of the events of 1980 in baseball Years in baseball ← 1977 1978 1979 1980 1981 1982 1983 → 1980 in sports American football Aquatic sports Association football Athletics Badminton Baseball Basketball Canadian football Chess Climbing Combat sports Sumo Cricket 1979–80 1980 1980–81 Cycling Darts Equestrianism Esports …

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Carlos José – news · newspapers · books · scholar · JSTOR (May 2020) Brazilian singer-songwriter (1934–2020) Carlos JoséBirth nameCarlos José Ramos dos SantosBorn(1934-09-22)September 22, 1934São Paulo, São Paulo, BrazilDiedMay 9, 2020(2020-05-09)…

Pangkat Laksamana Madya di TNI AL Pangkat militer Indonesia Angkatan Darat Angkatan Laut Angkatan Udara Perwira Jenderal Besar Laksamana Besar Marsekal Besar Jenderal Laksamana Marsekal Letnan Jenderal Laksamana Madya Marsekal Madya Mayor Jenderal Laksamana Muda Marsekal Muda Brigadir Jenderal Laksamana Pertama Marsekal Pertama Kolonel Kolonel Kolonel Letnan Kolonel Letnan Kolonel Letnan Kolonel Mayor Mayor Mayor Kapten Kapten Kapten Letnan Satu Letnan Satu Letnan Satu Letnan Dua Letnan Dua Letn…

Osvaldo Martínez Martínez saat bermain untuk AméricaInformasi pribadiNama lengkap Osvaldo David Martínez ArceTanggal lahir 8 April 1986 (umur 37)Tempat lahir Luque, ParaguayTinggi 1,66 m (5 ft 5+1⁄2 in)Posisi bermain Gelandang serang, gelandang tengahInformasi klubKlub saat ini AméricaNomor 10Karier senior*Tahun Tim Tampil (Gol)2003–2008 Libertad 155 (35)2008–2011 Monterrey 94 (13)2011–2012 Atlante 49 (15)2013– América 105 (8)Tim nasional‡2008– Paragua…

Part of a series onLGBT topics       LesbianGayBisexualTransgender Sexual orientation and gender Aromanticism Asexuality Gray asexuality Biology Bisexuality Pansexuality Demographics Environment Gender fluidity Gender identity Gender role Gender variance Homosexuality Intersex Non-heterosexual Non-binary gender Queer Queer heterosexuality Questioning Sexual identity Sex–gender distinction Trans man Trans woman Transgender Transsexual Two-spirit History General Tim…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 13.58.26.236