Hyperboloid model

Red circular arc is geodesic in Poincaré disk model; it projects to the brown geodesic on the green hyperboloid.
Animation of partial {7,3} hyperbolic tiling of the hyperboloid rotated into the Poincare perspective.

In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S+ of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m-planes are represented by the intersections of (m+1)-planes passing through the origin in Minkowski space with S+ or by wedge products of m vectors. Hyperbolic space is embedded isometrically in Minkowski space; that is, the hyperbolic distance function is inherited from Minkowski space, analogous to the way spherical distance is inherited from Euclidean distance when the n-sphere is embedded in (n+1)-dimensional Euclidean space.

Other models of hyperbolic space can be thought of as map projections of S+: the Beltrami–Klein model is the projection of S+ through the origin onto a plane perpendicular to a vector from the origin to specific point in S+ analogous to the gnomonic projection of the sphere; the Poincaré disk model is a projection of S+ through a point on the other sheet S onto perpendicular plane, analogous to the stereographic projection of the sphere; the Gans model is the orthogonal projection of S+ onto a plane perpendicular to a specific point in S+, analogous to the orthographic projection; the band model of the hyperbolic plane is a conformal “cylindrical” projection analogous to the Mercator projection of the sphere; Lobachevsky coordinates are a cylindrical projection analogous to the equirectangular projection (longitude, latitude) of the sphere.

Minkowski quadratic form

If (x0, x1, ..., xn) is a vector in the (n + 1)-dimensional coordinate space Rn+1, the Minkowski quadratic form is defined to be

The vectors vRn+1 such that Q(v) = -1 form an n-dimensional hyperboloid S consisting of two connected components, or sheets: the forward, or future, sheet S+, where x0>0 and the backward, or past, sheet S, where x0<0. The points of the n-dimensional hyperboloid model are the points on the forward sheet S+.

The metric on the hyperboloid isThe Minkowski bilinear form B is the polarization of the Minkowski quadratic form Q,

(This is sometimes also written using scalar product notation ) Explicitly,

The hyperbolic distance between two points u and v of S+ is given by the formula

where arcosh is the inverse function of hyperbolic cosine.

Choice of metric signature

The bilinear form also functions as the metric tensor over the space. In n+1 dimensional Minkowski space, there are two choices for the metric with opposite signature, in the 3-dimensional case either (+, −, −) or (−, +, +).

If the signature (−, +, +) is chosen, then the scalar square of chords between distinct points on the same sheet of the hyperboloid will be positive, which more closely aligns with conventional definitions and expectations in mathematics. Then n-dimensional hyperbolic space is a Riemannian space and distance or length can be defined as the square root of the scalar square. If the signature (+, −, −) is chosen, scalar square between distinct points on the hyperboloid will be negative, so various definitions of basic terms must be adjusted, which can be inconvenient. Nonetheless, the signature (+, −, −, −) is also common for describing spacetime in physics. (Cf. Sign convention#Metric signature.)

Straight lines

A straight line in hyperbolic n-space is modeled by a geodesic on the hyperboloid. A geodesic on the hyperboloid is the (non-empty) intersection of the hyperboloid with a two-dimensional linear subspace (including the origin) of the n+1-dimensional Minkowski space. If we take u and v to be basis vectors of that linear subspace with

and use w as a real parameter for points on the geodesic, then

will be a point on the geodesic.[1]

More generally, a k-dimensional "flat" in the hyperbolic n-space will be modeled by the (non-empty) intersection of the hyperboloid with a k+1-dimensional linear subspace (including the origin) of the Minkowski space.

Isometries

The indefinite orthogonal group O(1,n), also called the (n+1)-dimensional Lorentz group, is the Lie group of real (n+1)×(n+1) matrices which preserve the Minkowski bilinear form. In a different language, it is the group of linear isometries of the Minkowski space. In particular, this group preserves the hyperboloid S. Recall that indefinite orthogonal groups have four connected components, corresponding to reversing or preserving the orientation on each subspace (here 1-dimensional and n-dimensional), and form a Klein four-group. The subgroup of O(1,n) that preserves the sign of the first coordinate is the orthochronous Lorentz group, denoted O+(1,n), and has two components, corresponding to preserving or reversing the orientation of the spatial subspace. Its subgroup SO+(1,n) consisting of matrices with determinant one is a connected Lie group of dimension n(n+1)/2 which acts on S+ by linear automorphisms and preserves the hyperbolic distance. This action is transitive and the stabilizer of the vector (1,0,...,0) consists of the matrices of the form

Where belongs to the compact special orthogonal group SO(n) (generalizing the rotation group SO(3) for n = 3). It follows that the n-dimensional hyperbolic space can be exhibited as the homogeneous space and a Riemannian symmetric space of rank 1,

The group SO+(1,n) is the full group of orientation-preserving isometries of the n-dimensional hyperbolic space.

In more concrete terms, SO+(1,n) can be split into n(n-1)/2 rotations (formed with a regular Euclidean rotation matrix in the lower-right block) and n hyperbolic translations, which take the form

where is the distance translated (along the x axis in this case), and the 2nd row/column can be exchanged with a different pair to change to a translation along a different axis. The general form of a translation in 3 dimensions along the vector is:

where . This extends naturally to more dimensions, and is also the simplified version of a Lorentz boost when you remove the relativity-specific terms.

Examples of groups of isometries

The group of all isometries of the hyperboloid model is O+(1,n). Any group of isometries is a subgroup of it.

Reflections

For two points , there is a unique reflection exchanging them.

Let . Note that , and therefore .

Then

is a reflection that exchanges and . This is equivalent to the following matrix:

(note the use of block matrix notation).

Then is a group of isometries. All such subgroups are conjugate.

Rotations and reflections

is the group of rotations and reflections that preserve . The function is an isomorphism from O(n) to this group. For any point , if is an isometry that maps to , then is the group of rotations and reflections that preserve .

Translations

For any real number , there is a translation

This is a translation of distance in the positive x direction if or of distance in the negative x direction if . Any translation of distance is conjugate to and . The set is the group of translations through the x-axis, and a group of isometries is conjugate to it if and only if it is a group of isometries through a line.

For example, let's say we want to find the group of translations through a line . Let be an isometry that maps to and let be an isometry that fixes and maps to . An example of such a is a reflection exchanging and (assuming they are different), because they are both the same distance from . Then is an isometry mapping to and a point on the positive x-axis to . is a translation through the line of distance . If , it is in the direction. If , it is in the direction. is the group of translations through .

Symmetries of horospheres

Let H be some horosphere such that points of the form are inside of it for arbitrarily large x. For any vector b in

is a hororotation that maps H to itself. The set of such hororotations is the group of hororotations preserving H. All hororotations are conjugate to each other.

For any in O(n-1)

is a rotation or reflection that preserves H and the x-axis. These hororotations, rotations, and reflections generate the group of symmetries of H. The symmetry group of any horosphere is conjugate to it. They are isomorphic to the Euclidean group E(n-1).

History

In several papers between 1878-1885, Wilhelm Killing[2][3][4] used the representation he attributed to Karl Weierstrass for Lobachevskian geometry. In particular, he discussed quadratic forms such as or in arbitrary dimensions , where is the reciprocal measure of curvature, denotes Euclidean geometry, elliptic geometry, and hyperbolic geometry.

According to Jeremy Gray (1986),[5] Poincaré used the hyperboloid model in his personal notes in 1880. Poincaré published his results in 1881, in which he discussed the invariance of the quadratic form .[6] Gray shows where the hyperboloid model is implicit in later writing by Poincaré.[7]

Also Homersham Cox in 1882[8][9] used Weierstrass coordinates (without using this name) satisfying the relation as well as .

Further exposure of the model was given by Alfred Clebsch and Ferdinand Lindemann in 1891 discussing the relation and .[10]

Weierstrass coordinates were also used by Gérard (1892),[11] Felix Hausdorff (1899),[12] Frederick S. Woods (1903)],[13] Heinrich Liebmann (1905).[14]

The hyperboloid was explored as a metric space by Alexander Macfarlane in his Papers in Space Analysis (1894). He noted that points on the hyperboloid could be written as

where α is a basis vector orthogonal to the hyperboloid axis. For example, he obtained the hyperbolic law of cosines through use of his Algebra of Physics.[1]

H. Jansen made the hyperboloid model the explicit focus of his 1909 paper "Representation of hyperbolic geometry on a two sheeted hyperboloid".[15] In 1993 W.F. Reynolds recounted some of the early history of the model in his article in the American Mathematical Monthly.[16]

Being a commonplace model by the twentieth century, it was identified with the Geschwindigkeitsvectoren (velocity vectors) by Hermann Minkowski in his 1907 Göttingen lecture 'The Relativity Principle'. Scott Walter, in his 1999 paper "The Non-Euclidean Style of Minkowskian Relativity"[17] recalls Minkowski's awareness, but traces the lineage of the model to Hermann Helmholtz rather than Weierstrass and Killing.

In the early years of relativity the hyperboloid model was used by Vladimir Varićak to explain the physics of velocity. In his speech to the German mathematical union in 1912 he referred to Weierstrass coordinates.[18]

See also

Notes and references

  1. ^ a b Alexander Macfarlane (1894) Papers on Space Analysis, B. Westerman, New York, weblink from archive.org
  2. ^ Killing, W. (1878) [1877]. "Ueber zwei Raumformen mit constanter positiver Krümmung". Journal für die Reine und Angewandte Mathematik. 86: 72–83.
  3. ^ Killing, W. (1880) [1879]. "Die Rechnung in den Nicht-Euklidischen Raumformen". Journal für die Reine und Angewandte Mathematik. 89: 265–287.
  4. ^ Killing, W. (1885). Die nicht-euklidischen Raumformen. Leipzig.{{cite book}}: CS1 maint: location missing publisher (link)
  5. ^ Linear differential equations and group theory from Riemann to Poincaré (pages 271,2)
  6. ^ Poincaré, H. (1881). "Sur les applications de la géométrie non-euclidienne à la théorie des formes quadratiques" (PDF). Association Française Pour l'Avancement des Sciences. 10: 132–138.
  7. ^ See also Poincaré: On the fundamental hypotheses of geometry 1887 Collected works vol.11, 71-91 and referred to in the book of B.A. Rosenfeld A History of Non-Euclidean Geometry p.266 in English version (Springer 1988).
  8. ^ Cox, H. (1881). "Homogeneous coordinates in imaginary geometry and their application to systems of forces". The Quarterly Journal of Pure and Applied Mathematics. 18 (70): 178–192.
  9. ^ Cox, H. (1882) [1881]. "Homogeneous coordinates in imaginary geometry and their application to systems of forces (continued)". The Quarterly Journal of Pure and Applied Mathematics. 18 (71): 193–215.
  10. ^ Lindemann, F. (1891) [1890]. Vorlesungen über Geometrie von Clebsch II. Leipzig. p. 524.{{cite book}}: CS1 maint: location missing publisher (link)
  11. ^ Gérard, L. (1892). Sur la géométrie non-Euclidienne. Paris: Gauthier-Villars.
  12. ^ Hausdorff, F. (1899). "Analytische Beiträge zur nichteuklidischen Geometrie". Leipziger Math.-Phys. Berichte. 51: 161–214. hdl:2027/hvd.32044092889328.
  13. ^ Woods, F. S. (1905) [1903]. "Forms of non-Euclidean space". The Boston Colloquium: Lectures on Mathematics for the Year 1903: 31–74.
  14. ^ Liebmann, H. (1905) [1904]. Nichteuklidische Geometrie. Leipzig: Göschen.
  15. ^ Abbildung hyperbolische Geometrie auf ein zweischaliges Hyperboloid Mitt. Math. Gesellsch Hamburg 4:409–440.
  16. ^ Reynolds, William F. (1993) "Hyperbolic geometry on a hyperboloid", American Mathematical Monthly 100:442–55, Jstor link
  17. ^ Walter, Scott A. (1999), "The non-Euclidean style of Minkowskian relativity", in J. Gray (ed.), The Symbolic Universe: Geometry and Physics 1890-1930, Oxford University Press, pp. 91–127
  18. ^ Varićak, V. (1912), "On the Non-Euclidean Interpretation of the Theory of Relativity" , Jahresbericht der Deutschen Mathematiker-Vereinigung, 21: 103–127

Read other articles:

Koordinat: 8°11′23″S 114°58′06″E / 8.189755°S 114.968330°E / -8.189755; 114.968330 BanjarKecamatanPeta lokasi Kecamatan BanjarNegara IndonesiaProvinsiBaliKabupatenBulelengPemerintahan • CamatGede Santika,SHPopulasi • Total71,890 jiwa (2.016)[1] 68,960 jiwa (2.010)[2] jiwaKode pos81152Kode Kemendagri51.08.04 Kode BPS5108040 Luas173,28 km²[1]Desa/kelurahan17 desa[1]Situs webbanjar.bulelengkab.go.id...

 

 

Bourguignon-morvandiauBorguignon-morvandiau Pays France Région Bourgogne Nombre de locuteurs 50,000 ayant une connaissance de la langue en 1988[1] Classification par famille - langues indo-européennes - langues italiques - langues latino-falisques - latin - latin vulgaire - langues romanes - langues romanes occidentales - langues gallo-romanes - langues d'oïl - bourguignon-morvandiau Codes de langue Linguasphere & 51-AAA-hl 51-AAA-hk & 51-AAA-hl Glottolog bour1247 Échantillon Art...

 

 

Dritte LigaSport Calcio TipoSquadre di club FederazioneDFB Paese Germania OrganizzatoreDFB Cadenzaannuale Aperturaluglio Chiusuramaggio Partecipanti20 squadre Formulagirone all'italiana Promozione in2. Bundesliga Retrocessione inRegionalliga Sito Internethttp://www.dfb.de/3-liga/ StoriaFondazione2008 Numero edizioni16 Detentore Elversberg Edizione in corso3. Liga 2023-2024 Trofeo o riconoscimento Modifica dati su Wikidata · Manuale La Dritte Liga o semplicemente 3. Liga (ted. ...

Questa voce sull'argomento calciatori brasiliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Joeano Nazionalità  Brasile Altezza 182 cm Calcio Ruolo Attaccante Termine carriera 2018 Carriera Squadre di club1 1999 Fortaleza? (?)1999-2000 Arrifanense? (?)2001-2002 Esmoriz? (?)2002-2003 Sanjoanense36 (28)2003 Salamanca8 (1)2004-2006 Académica14 (7)2006-2007 Be...

 

 

1806 House elections in Vermont 1806 United States House of Representatives elections in Vermont ← 1804–1805 September 2, 1806 (1806-09-02) 1808 → All 4 Vermont seats to the United States House of Representatives   Majority party Minority party   Party Federalist Democratic-Republican Last election 2 2 Seats won 2 2 Seat change Elections in Vermont Federal government Presidential elections 1792 1796 1800 1804 1808 1812 1816 1820 ...

 

 

Japanese Buddhist monk This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2023) (Learn how and when to remove this message) Kūkai空海Painting of Kūkai from the Shingon Hassozō, a set of scrolls depicting the first eight patriarchs of the Shingon school. Japan, Kamakura period (13th-14th centuries).TitleFounder of Shingon BuddhismPersonalBorn27 July 774...

American sculptor Olin Levi WarnerWarner in 1874Born(1844-04-09)April 9, 1844Suffield, Connecticut, U.S.DiedAugust 14, 1896(1896-08-14) (aged 52)New York City, New York, U.S.Known forBas relief, sculpture Olin Levi Warner (April 9, 1844 – August 14, 1896) was an American sculptor and artist noted for the striking bas relief portrait medallions and busts he created in the late 19th century.[1] Early life Warner was born in Suffield, Connecticut. Warner's great-...

 

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Taman Nasional Gunung Leuser – berita · surat kabar · buku · cendekiawan · JSTOR (Juni 2021) Taman Nasional Gunung LeuserIUCN Kategori II (Taman Nasional)Hutan hujan di zona inti TN Gunung LeuserTN Gunung Leu...

 

 

Canadian politician (1952–2013) Peter KormosKormos at an ONDP event in August 2009Minister of Consumer and Commercial RelationsIn office1990–1991Preceded byGreg SorbaraSucceeded byMarilyn ChurleyMinistry of Financial InstitutionsIn office1990–1991Preceded byMurray ElstonSucceeded byBrian CharltonMember of Provincial ParliamentIn office2007–2011Preceded byConstituency createdSucceeded byCindy ForsterConstituencyWellandIn office1999–2007Preceded byConstituency createdSucceeded byconst...

Genus of flowering plants This article is about the plant genus. For the genus of insects, see Bombyliidae and Lomatia belzebul. Lomatiinae redirects here. For the insect subfamily, see Lomatiinae (fly). Lomatia L. silaifolia Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Order: Proteales Family: Proteaceae Subfamily: Grevilleoideae Tribe: Embothrieae Subtribe: Lomatiinae Genus: LomatiaR.Br. Species See text Synonyms Tricondylus Salisb. ex K...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

Shadow Cabinet of the United Kingdom in 1997 Major Shadow CabinetShadow cabinet of the United KingdomMay – June 1997Date formed2 May 1997Date dissolved19 June 1997People and organisationsMonarchElizabeth IILeader of the OppositionJohn MajorDeputy Leader of the OppositionMichael HeseltineMember party  Conservative PartyStatus in legislatureOfficial Opposition 165 / 659 (25%)HistoryElection(s)1997 general electionOutgoing election1997 Conservative Party leadership electionLegislatu...

1st century Christian evangelist, philosopher and bishop This article uses texts from within a religion or faith system without referring to secondary sources that critically analyze them. Please help improve this article. (December 2022) (Learn how and when to remove this message) SaintTimothyIcon of Saint TimothyBishop, MartyrBornc. AD 30Lystra, Galatia, Roman Empire[1]orDerbe, Galatia, Roman Empire[2][3]Diedunknown (The Acts of Timothy dates Timothy's death to c. AD...

 

 

Expedition 42Statistiche missioneNome missioneExpedition 42 Inizio missione10 novembre 2014 Fine missione11 marzo 2015 Membri equipaggio6 Lancio e rientroData di lancio10 novembre 2014 Luogo di lancioCosmodromo di Bajkonur, Kazakistan Velivoli utilizzatiSojuz TMA-14M, Sojuz TMA-15M Data di atterraggio11 marzo 2015 Fotografia dell'equipaggio Missioni ExpeditionPrecedenteSuccessivaExpedition 41 Expedition 43 Le date sono espresse in UTC Modifica dati su Wikidata · Manuale Expedition 42 è...

 

 

Legna da ardere Il fuoco La legna da ardere è un qualunque tipo di legna raccolta ed usata come combustibile. È classificata come biocombustibile e rappresenta ancora oggi il principale combustibile di uso domestico per circa 1/3 della popolazione mondiale. Generalmente non è un materiale sottoposto a particolari processi lavorativi e si presenta in una qualche forma riconoscibile come pezzo di tronco o ramo a differenza di altri combustibili a base di legna come il pellet. La legna da ard...

South Sudanese sprinter James ChiengjiekChiengjiek at the 2016 OlympicsPersonal informationBorn (1992-03-02) March 2, 1992 (age 32)Height1.79 m (5 ft 10+1⁄2 in)Weight59 kg (130 lb)SportCountryRefugee Olympic TeamSportTrack and fieldEvent400 metresClubTegla Loroupe Foundation[1]Coached byTegla Loroupe[1]Achievements and titlesPersonal best52.89 (2016)[2] James Nyang Chiengjiek (born March 2, 1992) is a runner originally from South Sud...

 

 

Bangladeshi vehicle for hire company Pathao LtdLogo since 25 October 2023Logo since 25 October 2023[1]Native nameপাঠাওCompany typeDigital PlatformIndustryTransportationfood deliverydelivery (commerce)[2]FoundedMarch 2015; 9 years ago (2015-03) in Dhaka, Bangladesh[3]Founders Hussain Elius Shifat Adnan Fahim Saleh HeadquartersGulshan 2, Dhaka, BangladeshArea servedBangladesh, Nepal[4]Key peopleFahim Ahmed (CEO)Shifat Adnan (CTO)S...

 

 

40th Governor of Ohio For the former governor's grandson, who served as a sports administrator, see Asa Smith Bushnell III. Asa Smith Bushnell40th Governor of OhioIn officeJanuary 13, 1896 – January 8, 1900LieutenantAsa W. JonesPreceded byWilliam McKinleySucceeded byGeorge K. Nash Personal detailsBorn(1834-09-16)September 16, 1834Rome, New York, U.S.DiedJanuary 15, 1904(1904-01-15) (aged 69)Columbus, Ohio, U.S.Resting placeFerncliff Cemetery, Springfield, OhioPolitical par...

Dieser Artikel behandelt die historische französisches Provinz Comminges. Zum Adelsgeschlecht siehe Comminges (Adelsgeschlecht). Karte der historischen Provinz Comminges und heutige Départements Das Comminges (okzitanisch-gaskognisch: Comenge) ist eine historische Grafschaft und Provinz im Süden Frankreichs. Sie umfasst die südliche Hälfte des heutigen Départements Haute-Garonne, entsprechend den Arrondissements von Saint-Gaudens und Muret. Inhaltsverzeichnis 1 Geografie 2 Geschichte 2...

 

 

Untuk Yurisdiksi Gereja Katolik di Andorra, lihat Daftar paroki di Andorra. ParishesParròquies d'AndorraKategoriUnitary stateLetakPrincipality of AndorraJumlah wilayah7 ParishesPenduduk5,422 Ordino – 22,256 Andorra la VellaLuas12 km2 (4,6 sq mi) Andorra la Vella – 20.494 km2 (7.913 sq mi) CanilloPemerintahanParish governmentPembagian administratifVillage Andorra terdiri dari tujuh komunitas yang dikenal sebagai paroki (bahasa Katalan: parròqui...