Bipyramid

In geometry, a bipyramid, dipyramid, or double pyramid is a polyhedron formed by fusing two pyramids together base-to-base. The polygonal base of each pyramid must therefore be the same, and unless otherwise specified the base vertices are usually coplanar and a bipyramid is usually symmetric, meaning the two pyramids are mirror images across their common base plane. When each apex (pl. apices, the off-base vertices) of the bipyramid is on a line perpendicular to the base and passing through its center, it is a right bipyramid;[a] otherwise it is oblique. When the base is a regular polygon, the bipyramid is also called regular.

Definition and properties

A bipyramid is a polyhedron constructed by fusing two pyramids which share the same polygonal base;[1] a pyramid is in turn constructed by connecting each vertex of its base to a single new vertex (the apex) not lying in the plane of the base, for an n-gonal base forming n triangular faces in addition to the base face. An n-gonal bipyramid thus has 2n faces, 3n edges, and n + 2 vertices. More generally, a right pyramid is a pyramid where the apices are on the perpendicular line through the centroid of an arbitrary polygon or the incenter of a tangential polygon, depending on the source.[a] Likewise, a right bipyramid is a polyhedron constructed by attaching two symmetrical right bipyramid bases; bipyramids whose apices are not on this line are called oblique bipyramids.[2]

When the two pyramids are mirror images, the bipyramid is called symmetric. It is called regular if its base is a regular polygon.[1] When the base is a regular polygon and the apices are on the perpendicular line through its center (a regular right bipyramid) then all of its faces are isosceles triangles; sometimes the name bipyramid refers specifically to symmetric regular right bipyramids,[3] Examples of such bipyramids are the triangular bipyramid, octahedron (square bipyramid) and pentagonal bipyramid. If all their edges are equal in length, these shapes consist of equilateral triangle faces, making them deltahedra;[4][5] the triangular bipyramid and the pentagonal bipyramid are Johnson solids, and the regular octahedron is a Platonic solid.[6]

The octahedron is dual to the cube

The symmetric regular right bipyramids have prismatic symmetry, with dihedral symmetry group Dnh of order 4n: they are unchanged when rotated 1/n of a turn around the axis of symmetry, reflected across any plane passing through both apices and a base vertex or both apices and the center of a base edge, or reflected across the mirror plane.[7] Because their faces are transitive under these symmetry transformations, they are isohedral.[8][9] They are the dual polyhedra of prisms and the prisms are the dual of bipyramids as well; the bipyramids vertices correspond to the faces of the prism, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other, and vice versa.[10] The prisms share the same symmetry as the bipyramids.[11] The regular octahedron is more symmetric still, as its base vertices and apices are indistinguishable and can be exchanged by reflections or rotations; the regular octahedron and its dual, the cube, have octahedral symmetry.[12]

The volume of a symmetric bipyramid is where B is the area of the base and h the perpendicular distance from the base plane to either apex. In the case of a regular n-sided polygon with side length s and whose altitude is h, the volume of such a bipyramid is:

A concave tetragonal bipyramid
An asymmetric hexagonal bipyramid

Concave bipyramids

A concave bipyramid has a concave polygon base, and one example is a concave tetragonal bipyramid or an irregular concave octahedron. A bipyramid with an arbitrary polygonal base could be considered a right bipyramid if the apices are on a line perpendicular to the base passing through the base's centroid.

Asymmetric bipyramids

An asymmetric bipyramid has apices which are not mirrored across the base plane; for a right bipyramid this only happens if each apex is a different distance from the base.

The dual of an asymmetric right n-gonal bipyramid is an n-gonal frustum.

A regular asymmetric right n-gonal bipyramid has symmetry group Cnv, of order 2n.

Scalene triangle bipyramids

Example: ditetragonal bipyramid (2n = 2×4)

An isotoxal right (symmetric) di-n-gonal bipyramid is a right (symmetric) 2n-gonal bipyramid with an isotoxal flat polygon base: its 2n basal vertices are coplanar, but alternate in two radii.

All its faces are congruent scalene triangles, and it is isohedral. It can be seen as another type of a right symmetric di-n-gonal scalenohedron, with an isotoxal flat polygon base.

An isotoxal right (symmetric) di-n-gonal bipyramid has n two-fold rotation axes through opposite basal vertices, n reflection planes through opposite apical edges, an n-fold rotation axis through apices, a reflection plane through base, and an n-fold rotation-reflection axis through apices,[13] representing symmetry group Dnh, [n,2], (*22n), of order 4n. (The reflection about the base plane corresponds to the rotation-reflection. If n is even, then there is an inversion symmetry about the center, corresponding to the 180° rotation-reflection.)

Example with 2n = 2×3:

An isotoxal right (symmetric) ditrigonal bipyramid has three similar vertical planes of symmetry, intersecting in a (vertical) 3-fold rotation axis; perpendicular to them is a fourth plane of symmetry (horizontal); at the intersection of the three vertical planes with the horizontal plane are three similar (horizontal) 2-fold rotation axes; there is no center of inversion symmetry,[14] but there is a center of symmetry: the intersection point of the four axes.

Example with 2n = 2×4:

An isotoxal right (symmetric) ditetragonal bipyramid has four vertical planes of symmetry of two kinds, intersecting in a (vertical) 4-fold rotation axis; perpendicular to them is a fifth plane of symmetry (horizontal); at the intersection of the four vertical planes with the horizontal plane are four (horizontal) 2-fold rotation axes of two kinds, each perpendicular to a plane of symmetry; two vertical planes bisect the angles between two horizontal axes; and there is a centre of inversion symmetry.[15]

Double example:

  • The bipyramid with isotoxal 2×2-gon base vertices U, U', V, V' and right symmetric apices A, A' has its faces isosceles. Indeed:
    • Upper apical edge lengths:
    • Base edge lengths:
    • Lower apical edge lengths (equal to upper edge lengths):
  • The bipyramid with same base vertices, but with right symmetric apices also has its faces isosceles. Indeed:
    • Upper apical edge lengths:
    • Base edge length (equal to previous example):
    • Lower apical edge lengths (equal to upper edge lengths):
Examples of rhombic bipyramids

In crystallography, isotoxal right (symmetric) didigonal[b] (8-faced), ditrigonal (12-faced), ditetragonal (16-faced), and dihexagonal (24-faced) bipyramids exist.[13][16]

Scalenohedra

Example: ditrigonal scalenohedron (2n = 2×3)

A scalenohedron is similar to a bipyramid; the difference is that the scalenohedra has a zig-zag pattern in the middle edges.[17]

It has two apices and 2n basal vertices, 4n faces, and 6n edges; it is topologically identical to a 2n-gonal bipyramid, but its 2n basal vertices alternate in two rings above and below the center.[16]

All its faces are congruent scalene triangles, and it is isohedral. It can be seen as another type of a right symmetric di-n-gonal bipyramid, with a regular zigzag skew polygon base.

A regular right symmetric di-n-gonal scalenohedron has n two-fold rotation axes through opposite basal mid-edges, n reflection planes through opposite apical edges, an n-fold rotation axis through apices, and a 2n-fold rotation-reflection axis through apices (about which 1n rotations-reflections globally preserve the solid),[13] representing symmetry group Dnv = Dnd, [2+,2n], (2*n), of order 4n. (If n is odd, then there is an inversion symmetry about the center, corresponding to the 180° rotation-reflection.)

Example with 2n = 2×3:

A regular right symmetric ditrigonal scalenohedron has three similar vertical planes of symmetry inclined to one another at 60° and intersecting in a (vertical) 3-fold rotation axis, three similar horizontal 2-fold rotation axes, each perpendicular to a plane of symmetry, a center of inversion symmetry,[18] and a vertical 6-fold rotation-reflection axis.

Example with 2n = 2×2:

A regular right symmetric didigonal scalenohedron has only one vertical and two horizontal 2-fold rotation axes, two vertical planes of symmetry, which bisect the angles between the horizontal pair of axes, and a vertical 4-fold rotation-reflection axis;[19] it has no center of inversion symmetry.
Examples of disphenoids and of an 8-faced scalenohedron

For at most two particular values of the faces of such a scalenohedron may be isosceles.

Double example:

  • The scalenohedron with regular zigzag skew 2×2-gon base vertices U, U', V, V' and right symmetric apices A, A' has its faces isosceles. Indeed:
    • Upper apical edge lengths:
    • Base edge length:
    • Lower apical edge lengths (equal to upper edge lengths swapped):
  • The scalenohedron with same base vertices, but with right symmetric apices also has its faces isosceles. Indeed:
    • Upper apical edge lengths:
    • Base edge length (equal to previous example):
    • Lower apical edge lengths (equal to upper edge lengths swapped):

In crystallography, regular right symmetric didigonal (8-faced) and ditrigonal (12-faced) scalenohedra exist.[13][16]

The smallest geometric scalenohedra have eight faces, and are topologically identical to the regular octahedron. In this case (2n = 2×2), in crystallography, a regular right symmetric didigonal (8-faced) scalenohedron is called a tetragonal scalenohedron.[13][16]

Let us temporarily focus on the regular right symmetric 8-faced scalenohedra with h = r, i.e. Their two apices can be represented as A, A' and their four basal vertices as U, U', V, V': where z is a parameter between 0 and 1.

At z = 0, it is a regular octahedron; at z = 1, it has four pairs of coplanar faces, and merging these into four congruent isosceles triangles makes it a disphenoid; for z > 1, it is concave.

Example: geometric variations with regular right symmetric 8-faced scalenohedra:
z = 0.1 z = 0.25 z = 0.5 z = 0.95 z = 1.5

If the 2n-gon base is both isotoxal in-out and zigzag skew, then not all faces of the isotoxal right symmetric scalenohedron are congruent.

Example with five different edge lengths:

  • The scalenohedron with isotoxal in-out zigzag skew 2×2-gon base vertices U, U', V, V' and right symmetric apices A, A' has congruent scalene upper faces, and congruent scalene lower faces, but not all its faces are congruent. Indeed:
    • Upper apical edge lengths:
    • Base edge length:
    • Lower apical edge lengths:

For some particular values of zA = |zA'|, half the faces of such a scalenohedron may be isosceles or equilateral.

Example with three different edge lengths:

  • The scalenohedron with isotoxal in-out zigzag skew 2×2-gon base vertices U, U', V, V' and right symmetric apices A, A' has congruent scalene upper faces, and congruent equilateral lower faces; thus not all its faces are congruent. Indeed:
    • Upper apical edge lengths:
    • Base edge length:
    • Lower apical edge length(s):

Star bipyramids

A star bipyramid has a star polygon base, and is self-intersecting.[20]

A regular right symmetric star bipyramid has congruent isosceles triangle faces, and is isohedral.

A p/q-bipyramid has Coxeter diagram .

Example star bipyramids:
Base 5/2-gon 7/2-gon 7/3-gon 8/3-gon
Image

4-polytopes with bipyramidal cells

The dual of the rectification of each convex regular 4-polytopes is a cell-transitive 4-polytope with bipyramidal cells. In the following:

  • A is the apex vertex of the bipyramid;
  • E is an equator vertex;
  • EE is the distance between adjacent vertices on the equator (equal to 1);
  • AE is the apex-to-equator edge length;
  • AA is the distance between the apices.

The bipyramid 4-polytope will have VA vertices where the apices of NA bipyramids meet. It will have VE vertices where the type E vertices of NE bipyramids meet.

  • bipyramids meet along each type AE edge.
  • bipyramids meet along each type EE edge.
  • is the cosine of the dihedral angle along an AE edge.
  • is the cosine of the dihedral angle along an EE edge.

As cells must fit around an edge,

4-polytopes with bipyramidal cells
4-polytope properties Bipyramid properties
Dual of
rectified
polytope
Coxeter
diagram
Cells VA VE NA NE Bipyramid
cell
Coxeter
diagram
AA AE[c]
R. 5-cell 10 5 5 4 6 3 3 Triangular 0.667
R. tesseract 32 16 8 4 12 3 4 Triangular 0.624
R. 24-cell 96 24 24 8 12 4 3 Triangular 0.745
R. 120-cell 1200 600 120 4 30 3 5 Triangular 0.613
R. 16-cell 24 [d] 8 16 6 6 3 3 Square 1
R. cubic
honeycomb
6 12 3 4 Square 0.866
R. 600-cell 720 120 600 12 6 3 3 Pentagonal 1.447

Other dimensions

A rhombus is a 2-dimensional analog of a right symmetric bipyramid

A generalized n-dimensional "bipyramid" is any n-polytope constructed from an (n − 1)-polytope base lying in a hyperplane, with every base vertex connected by an edge to two apex vertices. If the (n − 1)-polytope is a regular polytope and the apices are equidistant from its center along the line perpendicular to the base hyperplane, it will have identical pyramidal facets.

A 2-dimensional analog of a right symmetric bipyramid is formed by joining two congruent isosceles triangles base-to-base to form a rhombus. More generally, a kite is a 2-dimensional analog of a (possibly asymmetric) right bipyramid, and any quadrilateral is a 2-dimensional analog of a general bipyramid.

See also

Notes

  1. ^ a b The center of a regular polygon is unambiguous, but for irregular polygons sources disagree. Some sources only allow a right pyramid to have a regular polygon as a base. Others define a right pyramid as having its apices on a line perpendicular to the base and passing through its centroid. Polya (1954) restricts right pyramids to those with a tangential polygon for a base, with the apices on a line perpendicular to the base and passing through the incenter.
  2. ^ The smallest geometric di-n-gonal bipyramids have eight faces, and are topologically identical to the regular octahedron. In this case (2n = 2×2):
    an isotoxal right (symmetric) didigonal bipyramid is called a rhombic bipyramid,[13][16] although all its faces are scalene triangles, because its flat polygon base is a rhombus.
  3. ^ Given numerically due to more complex form.
  4. ^ The rectified 16-cell is the regular 24-cell and vertices are all equivalent – octahedra are regular bipyramids.

Citations

  1. ^ a b Aarts, J. M. (2008). Plane and Solid Geometry. Springer. p. 303. doi:10.1007/978-0-387-78241-6. ISBN 978-0-387-78241-6.
  2. ^ Polya, G. (1954). Mathematics and Plausible Reasoning: Induction and analogy in mathematics. Princeton University Press. p. 138. ISBN 0-691-02509-6.
  3. ^ Montroll, John (2009). Origami Polyhedra Design. A K Peters. p. 6. ISBN 9781439871065.
  4. ^ Trigg, Charles W. (1978). "An infinite class of deltahedra". Mathematics Magazine. 51 (1): 55–57. doi:10.1080/0025570X.1978.11976675. JSTOR 2689647. MR 1572246.
  5. ^ Uehara, Ryuhei (2020). Introduction to Computational Origami: The World of New Computational Geometry. Springer. p. 62. doi:10.1007/978-981-15-4470-5. ISBN 978-981-15-4470-5. S2CID 220150682.
  6. ^ Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press. ISBN 978-0-521-55432-9.
  7. ^ Flusser, Jan; Suk, Tomas; Zitofa, Barbara (2017). 2D and 3D Image Analysis by Moments. John & Sons Wiley. p. 126. ISBN 978-1-119-03935-8.
  8. ^ Chang, Ch.; Patzer, A. B. C.; Sülzle, D.; Hauer, H. "Onion-Like Inorganic Fullerenes from a Polyhedral Perspective". In Sattler, Klaus D. (ed.). 21st Century Nanoscience: A Handbook. Taylor & Francis. p. 15-4.
  9. ^ McLean, K. Robin (1990). "Dungeons, dragons, and dice". The Mathematical Gazette. 74 (469): 243–256. doi:10.2307/3619822. JSTOR 3619822. S2CID 195047512.
  10. ^ Sibley, Thomas Q. (2015). Thinking Geometrically: A Survey of Geometries. Mathematical Association of American. p. 53. ISBN 978-1-939512-08-6.
  11. ^ King, Robert B. (1994). "Polyhedral Dynamics". In Bonchev, Danail D.; Mekenyan, O.G. (eds.). Graph Theoretical Approaches to Chemical Reactivity. Springer. doi:10.1007/978-94-011-1202-4. ISBN 978-94-011-1202-4.
  12. ^ Armstrong, M. A. (1988). Group and Symmetry. Undergraduate Texts in Mathematics. Springer. p. 39. doi:10.1007/978-1-4757-4034-9. ISBN 978-1-4757-4034-9.
  13. ^ a b c d e f "Crystal Form, Zones, Crystal Habit". Tulane.edu. Retrieved 16 September 2017.
  14. ^ Spencer 1911, 6. Hexagonal system, rhombohedral division, ditrigonal bipyramidal class, p. 581 (p. 603 on Wikisource).
  15. ^ Spencer 1911, 2. Tegragonal system, holosymmetric class, fig. 46, p. 577 (p. 599 on Wikisource).
  16. ^ a b c d e "The 48 Special Crystal Forms". 18 September 2013. Archived from the original on 18 September 2013. Retrieved 18 November 2020.
  17. ^ Klein, Cornelis; Philpotts, Anthony R. (2013). Earth Materials: Introduction to Mineralogy and Petrology. Cambridge University Press. p. 108. ISBN 978-0-521-14521-3.
  18. ^ Spencer 1911, 6. Hexagonal system, rhombohedral division, holosymmetric class, fig. 68, p. 580 (p. 602 on Wikisource).
  19. ^ Spencer 1911, p. 2. Tetragonal system, scalenohedral class, fig. 51, p. 577 (p. 599 on Wikisource).
  20. ^ Rankin, John R. (1988). "Classes of polyhedra defined by jet graphics". Computers & Graphics. 12 (2): 239–254. doi:10.1016/0097-8493(88)90036-2.

Works Cited

Read other articles:

S-76 Galician Coast Guard S-76C+ Jenis SAR/utility helicopter Pembuat Sikorsky Aircraft Corporation Penerbangan perdana March 13, 1977 Pengguna utama CHC Helicopter Corporation[1] Jumlah 774 as of March 2011[butuh rujukan] Varian Sikorsky S-75 Sikorsky S-76 Spirit merupakan sebuah helikopter komersial multi guna yang berukuran sederhana buatan perusahaan Sikorsky Aircraft Corporation dari Amerika Serikat. S-76 digerakkan oleh dua turbin poros yang menggerakan kipas utama...

 

Ужокский перевал Ужокский перевал зимой Характеристики Высота седловины889 м Расположение 49°00′10″ с. ш. 22°53′15″ в. д.HGЯO Страна Украина Горная системаКарпаты  Ужокский перевал Ужокский перевал Медиафайлы на Викискладе Ужокский перевал летом Ужо́кс�...

 

Kopli Ansori Bupati Lebong ke-3PetahanaMulai menjabat 26 Februari 2021PresidenJoko WidodoGubernurRohidin MersyahWakilFahrurrozi PendahuluRosjonsyah Syahili Mustarani Abidin (Plh.)PenggantiPetahana Informasi pribadiLahir30 November 1981 (umur 42)Kota Baru, BengkuluKebangsaanIndonesiaPartai politikPANSuami/istriElvi SukaisihAnak3PekerjaanPolitikusSunting kotak info • L • B Kopli Ansori (lahir 30 November 1981) adalah Bupati Lebong periode 2021–2024. Ia menjabat seja...

Bayer LeverkusenNama lengkapBayer 04 Leverkusen Fußball GmbHJulukanWerkself (Skuat Pabrik) NeverkusenBerdiri1 Juli 1904; 119 tahun lalu (1904-07-01)StadionBayArena, Leverkusen(Kapasitas: 30.210)PemilikBayer AGPetinggi Fernando Carro (CEO) Simon Rolfes (Direktur utama)Pelatih kepala Xabi AlonsoLigaBundesliga2022–2023Bundesliga, ke-6 dari 18Situs webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Musim ini Bayer 04 Leverkusen Fußball GmbH, atau juga dikenal sebaga...

 

Electrochemical technique This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (May 2023) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help improve this article by add...

 

สตูล Satun Luas:2,479.0 km² Jumlah penduduk247,875 (tahun 2000) Kepadatan:100 inh./km² Satun (Bahasa Thailand สตูล) merupakan salah satu provinsi (changwat) di Thailand Selatan. Provinsi-provinsi yang berdekatan (dari arah utara searah jarum jam) adalah Trang, Phattalung dan Songkhla. Di bagian selatan, Satun berbatasan dengan Malaysia. Provinsi ini beribu kota di Satun. Geografi Satun terletak di Semenanjung Malaysia dan berpantai dengan Laut Andaman. Taman laut Ko Tarutao...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Piala Currie 1889–90Format kriketFirst-class cricket (3 hari)Format turnamenSingle matchJuaraTransvaal (gelar ke-1)Peserta2Pertandingan1Run terbanyakMonty Bowden (189 untuk Transvaal)Wicket terbanyakAubrey Smith (7 untuk Transvaal)1890–91 → l...

 

Canadian ice hockey player (born 1995) Ice hockey player Tyler Bertuzzi Bertuzzi with the Grand Rapids Griffins in 2017Born (1995-02-24) February 24, 1995 (age 29)Sudbury, Ontario, CanadaHeight 6 ft 0 in (183 cm)Weight 190 lb (86 kg; 13 st 8 lb)Position Left wingShoots LeftNHL teamFormer teams Toronto Maple LeafsDetroit Red WingsBoston BruinsNational team  CanadaNHL draft 58th overall, 2013Detroit Red WingsPlaying career 2015–present Tyler Be...

 

Radio station in Winnipeg This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: CJOB – news · newspapers · books · scholar · JSTOR (November 2017) (Learn how and when to remove this message) CJOBWinnipeg, ManitobaBroadcast areaSouthern ManitobaFrequency680 kHzBranding680 CJOBProgrammingFormatNews/talkAffiliationsG...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

McLaren MP4/11 David Coulthard in azione a Imola Descrizione generale Costruttore  McLaren Categoria Formula 1 Squadra Marlboro McLaren Mercedes Progettata da Neil Oatley Paddy Lowe Steve Nichols Sostituisce McLaren MP4/10-C Sostituita da McLaren MP4/12 Descrizione tecnica Meccanica Telaio fibra di carbonio con struttura a nido d'ape Motore Mercedes-Benz FO110/D V10 75° Trasmissione McLaren longitudinale semiautomatico a sei marce + retro Altro Carburante Mobil 1 Pneumatici Goodyear Ri...

 

Amsal 19Kitab Amsal lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab AmsalKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen20← pasal 18 pasal 20 → Amsal 19 (disingkat Ams 19) adalah bagian dari Kitab Amsal dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen.[1][2] Teks Naskah sumber utama: Masoretik, Septuaginta dan Naskah Laut Mati. Pasal ini terdiri dari 29 ayat. Berisi amsal-amsal raja Salomo bin Daud.[3] St...

United States federal district court in Washington (U.S. state) United States District Court for the Eastern District of Washington(E.D. Wash.)LocationThomas S. Foley Courthouse(Spokane)More locationsWilliam O. Douglas Federal Building(Yakima)Federal Building(Richland)Appeals toNinth CircuitEstablishedMarch 2, 1905Judges4Chief JudgeStanley BastianOfficers of the courtU.S. AttorneyVanessa WaldrefU.S. MarshalCraig Thayerwww.waed.uscourts.gov The United States District Court ...

 

1986 Connecticut Attorney General election ← 1982 November 4, 1986 1990 →   Nominee Joe Lieberman Richard E. Arnold Party Democratic Republican Popular vote 613,742 335,209 Percentage 64.7% 35.3% County resultsLieberman:      50–60%      60–70%      70–80% Attorney General before election Joe Lieberman Democratic Elected Attorney General Joe Lieberman Democratic Elections in Conne...

 

American playwright and screenwriter (born 1977) Beau WillimonWillimon in 2015BornPack Beauregard Willimon (1977-10-26) October 26, 1977 (age 46)Alexandria, Virginia, U.S.EducationColumbia University (BA, MFA)Juilliard School (GrDip)Occupation(s)Playwright, screenwriter, producerTitlePresident of the Writers Guild of America, EastTerm2017–present Pack Beauregard Willimon[1] (born October 26, 1977) is an American playwright and screenwriter. He developed the American version of ...

The BabymakersPoster rilis teaterSutradaraJay ChandrasekharProduserJay ChandrasekharJason BlumBrian Kavanaugh-JonesDitulis olehPeter GaulkeGerry SwallowPemeranPaul SchneiderOlivia MunnKevin HeffernanNat FaxonAisha TylerConstance ZimmerPenata musikEdward ShearmurSinematograferFrank G. DeMarcoPenyuntingBrad KatzPerusahaanproduksiBlumhouse ProductionsDuck Attack FilmsAlliance FilmsAutomatik EntertainmentIM GlobalDistributorMillennium EntertainmentTanggal rilis 3 Agustus 2012 (2012-08-...

 

Religion practiced by the Aja, Ewe, and Fon people This article is about the West African religion. For other uses, see Voodoo. Part of a series onVodun related religions calledVoodoo Beliefs West African Vodun Arará religionCandomblé (Jejé) Cuban VodúDominican Vudú Haitian VodouHoodoo Louisiana Voodoo Tambor de Mina Venezuelan Yuyu Trinidadian Vodunu Deities Creators DamballaMawuNana Buluku Loas Adjassou-LinguetorAdya Houn'tò AgassouAgwé Anaisa PyeAyida-Weddo AyizanAzaka-Tonnerre Baca...

 

Pour les autres navires du même nom, voir USS Enterprise. USS Enterprise USS Enterprise (CV-6) en septembre 1945 Autres noms Big E, Lucky E, The Grey Ghost Type Porte-avions de classe Yorktown Classe Classe Yorktown Histoire A servi dans  United States Navy Chantier naval Chantier naval Northrop Grumman de Newport News, Virginie Commandé 1933 Quille posée 16 juillet 1934 Lancement 3 octobre 1936 Armé 12 mai 1938 Statut retiré du service le 17 février 1947 Équipage Équipage 2...

Genetic disorder Medical conditionMuscular dystrophyIn affected muscle (right), the tissue has become disorganized and the concentration of dystrophin (green) is greatly reduced, compared to normal muscle (left).SpecialtyNeuromuscular medicineSymptomsIncreasing weakening, breakdown of skeletal muscles, trouble walking[1][2]DurationChronic[1]Types> 30, including Duchenne muscular dystrophy, Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, limb–gir...

 

I patrimoni dell'umanità di Andorra sono i siti dichiarati dall'UNESCO come patrimonio dell'umanità in Andorra. Indice 1 Siti 1.1 Patrimonio mondiale 1.2 Candidati 2 Note 3 Altri progetti 4 Collegamenti esterni Siti Patrimonio mondiale Foto Sito Tipo Anno Descrizione La valle del Madriu Perafita Claror Culturale (1160; v) 2004 Valle dei Pirenei nel quale si riscontra uno stile di vita legato alla pastorizia, nonché rifugio per la fauna selvatica rara o in via di estinzione[1]. Cand...