Archimedean solid

The Archimedean solids. Two of them are chiral, with both forms shown, making 15 models in all.

The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygons, but not all alike, and whose vertices are all symmetric to each other. The solids were named after Archimedes, although he did not claim credit for them. They belong to the class of uniform polyhedra, the polyhedra with regular faces and symmetric vertices. Some Archimedean solids were portrayed in the works of artists and mathematicians during the Renaissance.

The elongated square gyrobicupola or pseudo­rhombi­cub­octa­hedron is an extra polyhedron with regular faces and congruent vertices, but it is not generally counted as an Archimedean solid because it is not vertex-transitive.

The solids

The Archimedean solids have the vertex configuration and highly symmetric properties. Vertex configuration means a polyhedron whose two or more polygonal faces meet at the vertex. For instance, the means a polyhedron in which each vertex is met by alternating two triangles and two pentagons. Highly symmetric properties in this case mean the symmetry group of each solid were derived from the Platonic solids, resulting from their construction.[1] Some sources say the Archimedean solids are synonymous with the semiregular polyhedron.[2] Yet, the definition of a semiregular polyhedron may also include the infinite prisms and antiprisms, including the elongated square gyrobicupola.[3]

The thirteen Archimedean solids
Name Solids Vertex configurations[4] Faces[5] Edges[5] Vertices[5] Point
group
[6]
Truncated tetrahedron Truncated tetrahedron 3.6.6
4 triangles
4 hexagons
18 12 Td
Cuboctahedron Cuboctahedron 3.4.3.4
8 triangles
6 squares
24 12 Oh
Truncated cube Truncated hexahedron 3.8.8
8 triangles
6 octagons
36 24 Oh
Truncated octahedron Truncated octahedron 4.6.6
6 squares
8 hexagons
36 24 Oh
Rhombicuboctahedron Rhombicuboctahedron 3.4.4.4
8 triangles
18 squares
48 24 Oh
Truncated cuboctahedron Truncated cuboctahedron 4.6.8
12 squares
8 hexagons
6 octagons
72 48 Oh
Snub cube Snub hexahedron (Ccw) 3.3.3.3.4
32 triangles
6 squares
60 24 O
Icosidodecahedron Icosidodecahedron 3.5.3.5
20 triangles
12 pentagons
60 30 Ih
Truncated dodecahedron Truncated dodecahedron 3.10.10
20 triangles
12 decagons
90 60 Ih
Truncated icosahedron Truncated icosahedron 5.6.6
12 pentagons
20 hexagons
90 60 Ih
Rhombicosidodecahedron Rhombicosidodecahedron 3.4.5.4
20 triangles
30 squares
12 pentagons
120 60 Ih
Truncated icosidodecahedron Truncated icosidodecahedron 4.6.10
30 squares
20 hexagons
12 decagons
180 120 Ih
Snub dodecahedron Snub dodecahedron (Cw) 3.3.3.3.5
80 triangles
12 pentagons
150 60 I

The construction of some Archimedean solids begins from the Platonic solids. The truncation involves cutting away corners; to preserve symmetry, the cut is in a plane perpendicular to the line joining a corner to the center of the polyhedron and is the same for all corners, and an example can be found in truncated icosahedron constructed by cutting off all the icosahedron's vertices, having the same symmetry as the icosahedron, the icosahedral symmetry.[7] If the truncation is exactly deep enough such that each pair of faces from adjacent vertices shares exactly one point, it is known as a rectification. Expansion involves moving each face away from the center (by the same distance to preserve the symmetry of the Platonic solid) and taking the convex hull. An example is the rhombicuboctahedron, constructed by separating the cube or octahedron's faces from the centroid and filling them with squares.[8] Snub is a construction process of polyhedra by separating the polyhedron faces, twisting their faces in certain angles, and filling them up with equilateral triangles. Examples can be found in snub cube and snub dodecahedron. The resulting construction of these solids gives the property of chiral, meaning they are not identical when reflected in a mirror.[9] However, not all of them can be constructed in such a way, or they could be constructed alternatively. For example, the icosidodecahedron can be constructed by attaching two pentagonal rotunda base-to-base, or rhombicuboctahedron that can be constructed alternatively by attaching two square cupolas on the bases of octagonal prism.[5]

There are at least for known ten solids that have the Rupert property, a polyhedron that can pass through a copy of itself with the same or similar size. They are the cuboctahedron, truncated octahedron, truncated cube, rhombicuboctahedron, icosidodecahedron, truncated cuboctahedron, truncated icosahedron, truncated dodecahedron, and the truncated tetrahedron.[10] The Catalan solids are the dual polyhedron of Archimedean solids.[1]

Background of discovery

The names of Archimedean solids were taken from Ancient Greek mathematician Archimedes, who discussed them in a now-lost work. Although they were not credited to Archimedes originally, Pappus of Alexandria in the fifth section of his titled compendium Synagoge referring that Archimedes listed thirteen polyhedra and briefly described them in terms of how many faces of each kind these polyhedra have.[11]

Truncated icosahedron in De quinque corporibus regularibus
Rhombicuboctahedron drawn by Leonardo da Vinci (colorized)

During the Renaissance, artists and mathematicians valued pure forms with high symmetry. Some Archimedean solids appeared in Piero della Francesca's De quinque corporibus regularibus, in attempting to study and copy the works of Archimedes, as well as include citations to Archimedes.[12] Yet, he did not credit those shapes to Archimedes and know of Archimedes' work but rather appeared to be an independent rediscovery.[13] Other appearance of the solids appeared in the works of Wenzel Jamnitzer's Perspectiva Corporum Regularium, and both Summa de arithmetica and Divina proportione by Luca Pacioli, drawn by Leonardo da Vinci.[14] The net of Archimedean solids appeared in Albrecht Dürer's Underweysung der Messung, copied from the Pacioli's work. By around 1620, Johannes Kepler in his Harmonices Mundi had completed the rediscovery of the thirteen polyhedra, as well as defining the prisms, antiprisms, and the non-convex solids known as Kepler–Poinsot polyhedra.[15]

The elongated square gyrobicupola, a polyhedron where mathematicians mistakenly constructed the rhombicuboctahedron.

Kepler may have also found another solid known as elongated square gyrobicupola or pseudorhombicuboctahedron. Kepler once stated that there were fourteen Archimedean solids, yet his published enumeration only includes the thirteen uniform polyhedra. The first clear statement of such solid existence was made by Duncan Sommerville in 1905.[16] The solid appeared when some mathematicians mistakenly constructed the rhombicuboctahedron: two square cupolas attached to the octagonal prism, with one of them rotated in forty-five degrees.[17] The thirteen solids have the property of vertex-transitive, meaning any two vertices of those can be translated onto the other one, but the elongated square gyrobicupola does not. Grünbaum (2009) observed that it meets a weaker definition of an Archimedean solid, in which "identical vertices" means merely that the parts of the polyhedron near any two vertices look the same (they have the same shapes of faces meeting around each vertex in the same order and forming the same angles). Grünbaum pointed out a frequent error in which authors define Archimedean solids using some form of this local definition but omit the fourteenth polyhedron. If only thirteen polyhedra are to be listed, the definition must use global symmetries of the polyhedron rather than local neighborhoods. In the aftermath, the elongated square gyrobicupola was withdrawn from the Archimedean solids and included into the Johnson solid instead, a convex polyhedron in which all of the faces are regular polygons.[16]

See also

References

Footnotes

  1. ^ a b Diudea (2018), p. 39.
  2. ^ Kinsey, Moore & Prassidis (2011), p. 380.
  3. ^
  4. ^ Williams (1979).
  5. ^ a b c d Berman (1971).
  6. ^ Koca & Koca (2013), p. 47–50.
  7. ^
  8. ^ Viana et al. (2019), p. 1123, See Fig. 6.
  9. ^ Koca & Koca (2013), p. 49.
  10. ^
  11. ^
  12. ^ Banker (2005).
  13. ^ Field (1997), p. 248.
  14. ^
  15. ^ Schreiber, Fischer & Sternath (2008).
  16. ^ a b Grünbaum (2009).
  17. ^

Works cited

Further reading

Read other articles:

Cica-kopi melayu Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Passeriformes Famili: Timaliidae Genus: Pomatorhinus Spesies: P. montanus Nama binomial Pomatorhinus montanusHorsfield, 1821 Cica-kopi melayu (bahasa Latin: Pomatorhinus montanus) adalah spesies burung dari keluarga Timaliidae, dari genus Pomatorhinus. Burung ini merupakan jenis burung pemakan buah-buahan, kumbang, laba-laba, belalang, u...

 

D&RBeberapa sampul majalah D&RKategoripolitikFrekuensimingguanSirkulasi+/- 10 ribuPenerbitPT TemprintTerbitan pertama1968 (terbit kembali 1996)Terbitan terakhir2000PerusahaanPT Analisis KitaNegaraIndonesiaBahasaBahasa Indonesia D&R (singkatan dari Demokrasi dan Reformasi)[1] adalah salah satu majalah politik ternama di Indonesia. Awal berdiri majalah yang dimiliki oleh PT Analisis Kita ini dikenal sebagai majalah Detektif & Romantika yang menampilkan berita kriminal da...

 

Dream BandPembuatTrans 7Negara asal IndonesiaJmlh. episodevariatifProduksiDurasi120 menitRilis asliJaringanTV7Rilis2004 –2006 The Dream Band merupakan sebuah acara realitas yang ditayangkan oleh TV7 (sekarang Trans7). Acara ini dikemas untuk menciptakan salah satu band papan atas. Berisi acara yang berhubungan dengan musik dan mengudara selama 3 jam. Jebolan dreamband Dream Band 2004 Kotak (Juara 1) Kapten Olif Ize Mata Lima DF5 Hot F Dream Band 2005 Lalina (Juara 1) Flow Pluto L...

BabbittIklanSutradaraHarry BeaumontDitulis olehDorothy FarnumBerdasarkanBabbittoleh Sinclair LewisPemeranWillard LouisMary AldenCarmel MyersSinematograferDavid AbelPerusahaanproduksiWarner Bros.DistributorWarner Bros.Tanggal rilis 15 Juni 1924 (1924-06-15) Durasi80 menitNegaraAmerika SerikatBahasaBisu (intertitel Inggris) Babbitt adalah sebuah film drama bisu Amerika Serika tahun 1924 garapan Harry Beaumont dan menampilkan Willard Louis, Mary Alden, dan Carmel Myers.[1][2]...

 

Figure skating spin position Figure skating elementJackson Haines (1912), inventor of the sit spinElement nameSit spinAlternative nameJackson Haines spinScoring abbreviationSSpElement typeSpinNamed forJackson HainesThe sit spin (also known as the Jackson Haines spin) is one of the oldest elements in figure skating.[1] It was invented by American figure skater Jackson Haines. It has been called one of the most important spins in skating.[1] According to figure skater John MIsha...

 

Dewan Perwakilan Rakyat DaerahKota PalopoDewan Perwakilan Rakyat Daerah Kota Palopo 2019–2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai2 September 2019PimpinanKetuaNurhaenih (Golkar) sejak 30 Oktober 2019 Wakil Ketua IAbdul Salam (NasDem) sejak 30 Oktober 2019 Wakil Ketua IIIrvan Majid, S.T. (Demokrat) sejak 30 Oktober 2019 KomposisiAnggota25Partai & kursi  PKB (2)   Gerindra (3)   PDI-P (3)   Golkar (5)  ...

German preacher and theologian (c. 1489 – 1525) Thomas Muentzer redirects here. For the 1956 East German film, see Thomas Muentzer (film). Thomas MüntzerMüntzer, imagined in a 1608 engraving by Christoffel Van Sichem[a]Bornc. 1489Stolberg, County of Stolberg, Holy Roman EmpireDied27 May 1525 (aged 35–36)Free Imperial City of Mühlhausen, Holy Roman EmpireOccupation(s)Radical Reformation preacher, theologian, early ReformerSignature Part of a series on theReformati...

 

2008 Japanese filmLa Maison en Petits CubesDirected byKunio KatōWritten byKenya HirataProduced byMasanori Kusakabe Yuko HataMusic byKenji KondoProductioncompanyOh! ProductionRelease date 2008 (2008) Running time12 minutesCountryJapan La Maison en Petits Cubes (つみきのいえ, Tsumiki no Ie, The House of Small Cubes) is a 2008 Japanese animated short subject film created by Kunio Katō, with music by Kenji Kondo and produced by Robot Communications and animated by Oh! Production. It ...

 

2009 film MotherTheatrical posterHangul마더Revised RomanizationMadeoMcCune–ReischauerMadŏ Directed byBong Joon-hoWritten byBong Joon-hoPark Eun-kyoProduced byChoi Jae-wonSeo Woo-sikStarring Kim Hye-ja Won Bin CinematographyHong Kyung-pyoEdited byMoon Sae-kyungMusic byLee Byung-wooProductioncompaniesCJ EntertainmentBarunsonDistributed byCJ EntertainmentRelease dates 16 May 2009 (2009-05-16) (Cannes) 28 May 2009 (2009-05-28) (South Korea) Running time1...

Marathi cinema All-time 1910s 1910-1919 1920s 1920 1921 1922 1923 19241925 1926 1927 1928 1929 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 ...

 

Former open pit copper mine in Montana, United States Silver Bow Creek/Butte AreaSuperfund siteBerkeley Pit (center) and Yankee Doodle Tailings Pond (upper left) with terraced levels/access roadways. The city of Butte is at lower right.GeographyCityButteCountySilver BowStateMontanaCoordinates46°01′N 112°31′W / 46.02°N 112.51°W / 46.02; -112.51ButteLocation in the United StatesShow map of the United StatesButteLocation in MontanaShow map of MontanaInformationCER...

 

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Осн�...

Ethnic group Arabs in MaltaGħarab f'MaltaTotal population5,000+LanguagesArabic and MalteseReligionPredominantly IslamRelated ethnic groupsArab people, Arab diaspora, Arab Americans, Arab Argentine, Arab Brazilian, Arab Canadians, Arab Mexican Arabs in Malta (Maltese: Għarab f'Malta) are mostly expatriates from a range of Arab countries, particularly Libya and Syria. This list includes both first-generation and second-generation expatriates. Notable people This list is incomplete; you can he...

 

Brest БрэстБрест BenderaLambangNegara BelarusVoblastBrest VoblastRaionBrest RaionDidirikan1019Pemerintahan • MayorAlexander PalishenkowLuas • Total145 km2 (56 sq mi)Ketinggian280,4 m (9,199 ft)Populasi (2010) • Total310.800 • Kepadatan2.143/km2 (5,550/sq mi)Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST)Postal code224000Kode area telepon+375 (0)162License plate1Situs webwww.bres...

 

エルンスト・マッハ エルンスト・マッハ(1900年)生誕 Ernst Waldfried Josef Wenzel Mach (1838-02-18) 1838年2月18日 オーストリア帝国 モラヴィア ブルノ Chrlice死没 (1916-02-19) 1916年2月19日(78歳没) ドイツ帝国 ハール(ドイツ語版)研究分野 物理学研究機関 グラーツ大学プラハ・カレル大学ウィーン大学出身校 ウィーン大学主な指導学生 アンドリア・モホロビチッチ主な業績 マッ...

Voce principale: Deutscher Sportclub Arminia Bielefeld. Deutscher Sportclub Arminia BielefeldStagione 1975-1976Sport calcio Squadra Arminia Bielefeld Allenatore Erhard Ahmann 2. Bundesliga9º posto Coppa di GermaniaOttavi di finale Maggiori presenzeCampionato: Mittendorf (38)Totale: Mittendorf, Peitsch, Balke (41) Miglior marcatoreCampionato: Peitsch, Graul (11)Totale: Graul (16) StadioBielefelder Alm Maggior numero di spettatori23 000 vs. Osnabrück, Borussia Dortmund Minor numero...

 

ポラリメトリー(英語版)によるデスバレー の合成開口レーダー画像。 リモートセンシング (英: remote sensing) とは、原義的には一応、「離れた位置からセンシングすること」(遠隔地からセンサーを使って感知すること)やその手法・技法・技術のことである。広範囲のものを指しうる用語ではあるが、しかしこの用語は大抵はもっと狭義に用いて、人工衛星や航空...

 

Le Kizzuwatna fut un royaume anatolien du IIe millénaire av. J.-C., incorporé dans l’Empire hittite à la fin du XVe siècle av. J.-C. Ce fut le nom donné à la région située au pied des monts Taurus (en Turquie aujourd’hui) voisine de la Pamphylie à l'Ouest. Elle correspondait presque à la Cilicie et à la Cataonie (« Kataonia » pourrait être une forme gréco-latine du nom Kizzuwatna). Le pays était organisé autour des rivières Ceyhan et Seyhan,...

Voce principale: Associazione Sportiva Lucchese Libertas 1905. A.S. Lucchese LibertasStagione 2003-2004Sport calcio Squadra Lucchese Allenatore Maurizio Viscidi Presidente Aldo Grassi Serie C15º posto Coppa Italia Serie Cfase eliminatoria a gironi Maggiori presenzeCampionato: Sarti, Masini, Iacopino (33) Miglior marcatoreCampionato: Carruezzo (15) 2002-2003 2004-2005 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Associazione Sportiva Lucch...

 

Tribe of weevils Cryptoplini Cryptoplini on red gum flower bud Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Coleoptera Family: Curculionidae Subfamily: Curculioninae Tribe: CryptopliniLacordaire, 1863 Cryptoplini is a tribe of weevils in the subfamily Curculioninae. It occurs mostly in Australia with one species in New Guinea.[1] Description In adults of Cryptoplini, the pronotum and elytra are densely covered in scales, and th...