Rhombicuboctahedron

Rhombicuboctahedron
TypeArchimedean
Uniform polyhedron
Faces8 equilateral triangles
18 squares
Edges48
Vertices24
Vertex configuration
Schläfli symbol
Symmetry groupOctahedral symmetry
Pyritohedral symmetry
Dihedral angle (degrees)square-to-square: 135°
square-to-triangle: 144.7°
Dual polyhedronDeltoidal icositetrahedron
Vertex figure
Net

In geometry, the rhombicuboctahedron is an Archimedean solid with 26 faces, consisting of 8 equilateral triangles and 18 squares. It was named by Johannes Kepler in his 1618 Harmonices Mundi, being short for truncated cuboctahedral rhombus, with cuboctahedral rhombus being his name for a rhombic dodecahedron.[1]

The rhombicuboctahedron is an Archimedean solid, and its dual is a Catalan solid, the deltoidal icositetrahedron. The elongated square gyrobicupola is a polyhedron that is similar to a rhombicuboctahedron, but it is not an Archimedean solid because it is not vertex-transitive. The rhombicuboctahedron is found in diverse cultures in architecture, toys, the arts, and elsewhere.

Construction

The rhombicuboctahedron may be constructed from a cube by drawing a smaller one in the middle of each face, parallel to the cube's edges. After removing the edges of a cube, the squares may be joined by adding more squares adjacent between them, and the corners may be filled by the equilateral triangles. Another way to construct the rhombicuboctahedron is by attaching two regular square cupolas into the bases of a regular octagonal prism.[2]

Process of expanding the rhombicuboctahedron.

A rhombicuboctahedron may also be known as an expanded octahedron or expanded cube. This is because the rhombicuboctahedron may also be constructed by separating and pushing away the faces of a cube or a regular octahedron from their centroid (in blue or red, respectively, in the animation), and filling between them with the squares and equilateral triangles. This construction process is known as expansion.[3] By using all of these methods above, the rhombicuboctahedron has 8 equilateral triangles and 16 squares as its faces.[4] Relatedly, the rhombicuboctahedron may also be constructed by cutting all edges and vertices of either cube or a regular octahedron, a process known as rectification.[5]

Cartesian coordinates of a rhombicuboctahedron with an edge length 2 are the permutations of . [6]

Properties

Measurement and metric properties

The surface area of a rhombicuboctahedron can be determined by adding the area of all faces: 8 equilateral triangles and 18 squares. The volume of a rhombicuboctahedron can be determined by slicing it into two square cupolas and one octagonal prism. Given that the edge length , its surface area and volume is:[7]

The optimal packing fraction of rhombicuboctahedra is given by It was noticed that this optimal value is obtained in a Bravais lattice by de Graaf, van Roij & Dijkstra (2011).[8] Since the rhombicuboctahedron is contained in a rhombic dodecahedron whose inscribed sphere is identical to its inscribed sphere, the value of the optimal packing fraction is a corollary of the Kepler conjecture: it can be achieved by putting a rhombicuboctahedron in each cell of the rhombic dodecahedral honeycomb, and it cannot be surpassed, since otherwise the optimal packing density of spheres could be surpassed by putting a sphere in each rhombicuboctahedron of the hypothetical packing which surpasses it.[citation needed]

The dihedral angle of a rhombicuboctahedron can be determined by adding the dihedral angle of a square cupola and an octagonal prism:[9]

  • the dihedral angle of a rhombicuboctahedron between two adjacent squares on both the top and bottom is that of a square cupola 135°. The dihedral angle of an octagonal prism between two adjacent squares is the internal angle of a regular octagon 135°. The dihedral angle between two adjacent squares on the edge where a square cupola is attached to an octagonal prism is the sum of the dihedral angle of a square cupola square-to-octagon and the dihedral angle of an octagonal prism square-to-octagon 45° + 90° = 135°. Therefore, the dihedral angle of a rhombicuboctahedron for every two adjacent squares is 135°.
  • the dihedral angle of a rhombicuboctahedron square-to-triangle is that of a square cupola between those 144.7°. The dihedral angle between square-to-triangle, on the edge where a square cupola is attached to an octagonal prism is the sum of the dihedral angle of a square cupola triangle-to-octagon and the dihedral angle of an octagonal prism square-to-octagon 54.7° + 90° = 144.7°. Therefore, the dihedral angle of a rhombicuboctahedron for every square-to-triangle is 144.7°.

A rhombicuboctahedron has the Rupert property, meaning there is a polyhedron with the same or larger size that can pass through its hole.[10]

Symmetry and its classification family

3D model of a rhombicuboctahedron

The rhombicuboctahedron has the same symmetry as a cube and regular octahedron, the octahedral symmetry .[11] However, the rhombicuboctahedron also has a second set of distortions with six rectangular and sixteen trapezoidal faces, which do not have octahedral symmetry but rather pyritohedral symmetry , so they are invariant under the same rotations as the tetrahedron but different reflections.[12] It is centrosymmetric, meaning its symmetric is interchangeable by the appearance of inversion center. It is also non-chiral; that is, it is congruent to its own mirror image.[13]

The rhombicuboctahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex.[14] The polygonal faces that meet for every vertex are one equilateral triangle and three squares, and the vertex figure is denoted as . Its dual is deltoidal icositetrahedron, a Catalan solid, shares the same symmetry as the rhombicuboctahedron.[15]

The elongated square gyrobicupola is the only polyhedron resembling the rhombicuboctahedron. The difference is that the elongated square gyrobicupola is constructed by twisting one of its cupolae. It was once considered as the 14th Archimedean solid, until it was discovered that it is not vertex-transitive, categorizing it as the Johnson solid instead.[16]

Graph

The graph of a rhombicuboctahedron

The skeleton of a rhombicuboctahedron can be described as a polyhedral graph, meaning a graph that is planar and 3-vertex-connected. In other words, the edges of a graph are not crossed while being drawn, and removing any two of its vertices leaves a connected subgraph.

The rhombicuboctahedral graph has 24 vertices and 48 edges. It is quartic, meaning each of its vertices is connected to four others. This graph is classified as Archimedean graph, because it resembles the graph of Archimedean solid.[17]

Appearances

Many rhombicuboctahedral objects such as National Library in Minsk in the commemorative image (top left) and Rubik's cube variation (top right). The rhombicuboctahedron may also appear in art, as in Portrait of Luca Pacioli (bottom left) and Leonardo da Vinci's 1509 illustration in Divina proportione (bottom right).

The rhombicuboctahedron sometimes appears in architecture, with an example being the building of the National Library located at Minsk.[18] The Wilson House by Bruce Goff is another example of a rhombicuboctahedral building, although its module was depicted as a truncated cube in which the edges are all cut off. It was built during the Second World War and Operation Breakthrough in the 1960s.[19]

The rhombicuboctahedron may also be found in toys. For example, if the lines along which a Rubik's Cube can be turned are projected onto a sphere, they are topologically identical to a rhombicuboctahedron's edges. Variants using the Rubik's Cube mechanism have been produced, which closely resemble the rhombicuboctahedron. During the Rubik's Cube craze of the 1980s, at least two twisty puzzles sold had the form of a rhombicuboctahedron (the mechanism was similar to that of a Rubik's Cube)[20][21] Another example may be found in dice from Corfe Castle, each of whose square faces have marks of pairs of letters and pips.[22]

The rhombicuboctahedron may also appear in art. An example is the 1495 Portrait of Luca Pacioli, traditionally attributed to Jacopo de' Barbari, which includes a glass rhombicuboctahedron half-filled with water, which may have been painted by Leonardo da Vinci.[23] The first printed version of the rhombicuboctahedron was by Leonardo da Vinci and appeared in Pacioli's Divina proportione (1509).

References

Notes

  1. ^
  2. ^
    • Hartshorne (2000), p. 463
    • Berman (1971), p. 336, See table IV, the Properties of regular-faced convex polyhedra, line 13. Here, represents the octagonal prism and represents the square cupola.
  3. ^ Viana et al. (2019), p. 1123, See Fig. 6.
  4. ^
  5. ^ Linti (2013), p. 41.
  6. ^ Shepherd (1954).
  7. ^ Berman (1971), p. 336, See table IV, the Properties of regular-faced convex polyhedra, line 13..
  8. ^ de Graaf, van Roij & Dijkstra (2011).
  9. ^ Johnson (1966).
  10. ^
  11. ^
  12. ^ Cromwell (1997), p. 386. See Table 10.21, Classes of vertex-transitive polyhedra..
  13. ^
  14. ^ Diudea (2018), p. 39.
  15. ^ Williams (1979), p. 80.
  16. ^
  17. ^ Read & Wilson (1998), p. 269.
  18. ^
  19. ^ Gabriel (1997), p. 105–109.
  20. ^ "Soviet Puzzle Ball". TwistyPuzzles.com. Retrieved 23 December 2015.
  21. ^ "Diamond Style Puzzler". Jaap's Puzzle Page. Retrieved 31 May 2017.
  22. ^ Cromwell (1997), p. 4–5.
  23. ^ MacKinnon, Nick (1993). "The Portrait of Fra Luca Pacioli". The Mathematical Gazette. 77 (479): 143. doi:10.2307/3619717. JSTOR 3619717. S2CID 195006163.

Works cited

See also

Further reading

Read other articles:

Occitano occitan, lenga d'òcHablado en  FranciaEspaña EspañaItalia Italia MónacoRegión OccitaniaHablantes entre 2 millones hasta 12 millones, según fuentes[1]​Familia Indoeuropeo   Itálico     Romance      Romance occidental       Occitano-romance          OccitanoEscritura alfabeto latino, norma clásica del occitano, norma mistral...

 

Guillaume PatryKebangsaanKanada Guillaume Patry adalah pemain StarCraft profesional asal Kanada yang bermain dibawah alias Grrrr... Ia berasal dari Kota Quebec,[1] adalah juara dunia StarCraft pada tahun 1999.[2] Ia adalah panelis pada acara bincang-bincang Non-Summit[3] Referensi ^ Transcription de : Guillaume Patry : Maître de StarCraft. Diarsipkan dari versi asli tanggal 2012-10-21. Diakses tanggal 2010-11-27.  Parameter |url-status= yang tidak ...

 

Gereja Tritunggal Kudus, Stratford-upon-AvonGereja dari barat dayaNegaraBritania RayaDenominasiGereja InggrisKegerejaanBroad ChurchSitus webwww.stratford-upon-avon.org/index.htmlSejarahDedikasiTritunggal KudusAdministrasiParokiStratford-upon-AvonKeuskupanCoventryProvinsiCanterburyKlerusVikarisPatrick Taylor[1]Pendeta PembantuKay Dyer[1] The Collegiate Church of the Holy and Undivided Trinity, Stratford-upon-Avon adalah sebuah gereja paroki terdaftar[2] Tingkat 1 dari G...

Policy on permits required to enter Australia and its external territories This article is part of a series on thePolitics ofAustralia Constitution The Crown Monarch Charles III Governor-General David Hurley Executive Prime Minister Anthony Albanese (ALP) Deputy Prime Minister Richard Marles (ALP) Federal Executive Council Ministry Albanese ministry Cabinet Legislature Australian Parliament Senate President Sue Lines (ALP) Leader Penny Wong (ALP) House of Representatives Speaker Milton Dick (...

 

أوروبا الجنوبيةمعلومات عامةجزء من أوروبا تقع في منطقة تضاريس أوروبا الإحداثيات 41°05′37″N 15°01′01″E / 41.093498°N 15.017008°E / 41.093498; 15.017008 لديه جزء أو أجزاء ألبانيا[1]أندورا[1]البوسنة والهرسك[1] تعديل - تعديل مصدري - تعديل ويكي بيانات تشير التسمية جنوب أوروبا عمو...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

American actor Joel CrothersPublicity Photo of Joel CrothersBornJoel Anthony Crothers(1941-01-28)January 28, 1941Cincinnati, Ohio, U.S.DiedNovember 6, 1985(1985-11-06) (aged 44)Los Angeles, California, U.S.EducationBirch Wathen SchoolAlma materHarvard UniversityOccupationActor Joel Anthony Crothers (January 28, 1941 – November 6, 1985) was an American actor. His credits primarily included stage and television work, including a number of soap opera roles, the best known being Miles...

 

Sepasang gambar Men Shen menghiasi pintu kuil di Taichung, Taiwan. Artikel ini mengenai kebudayaan China. Lihat pula Janus, dewa pintu Romawi. Men Shen (t=門神; s=门神; pinyin=ménshén; Hokkien= Mui Sin) merupakan Dewa Pintu dalam tradisi China. Biasanya lukisan keduanya ditempelkan pada daun pintu masuk kuil, rumah, kantor, dan sebagainya supaya roh jahat tidak berani masuk. Men Shen selalu berjumlah sepasang, saling berhadapan; jika digambarkan saling membelakangi dipercaya akan membaw...

 

Rusalka oleh Ivan Bilibin, 1934 Dalam mitologi Slavia, rusalka adalah makhluk perempuan yang hidup di air. Menurut sebagian besar tradisi, rusalka merupakan perempuan ikan, yang tinggal di dasar sungai. Rusalka berasal dari para perempuan yang meninggal di sungai. Pada tengah malam para rusalka muncul dari dalam sungai lalu menari dan menyanyi untuk memikat para pria yang lewat. Pria yang terpikat oleh rusalka akan berjalan ke sungai dan tenggelam. Ada juga rusalka yang memikat pria dengan me...

Ethnolinguistic group in Pakistan For the ethnic group in Vietnam, see K'ho people. KhoکھوChitrali men along with Mehtar Fateh-ul-Mulk Ali Nasir, the current head of the Katoor DynastyTotal populationc. 800,000 (2021)[1]Regions with significant populationsChitral and Gilgit BaltistanLanguagesKhowarReligionPredominantly Hanafi Sunni Islam[2]Minority Ismaili Shia Islam[2]Related ethnic groupsOther Indo-Aryan peoples The Kho (/koʊ/,[3] Khowar: کھو) or...

 

Pour les articles homonymes, voir Zilli. Cet article est une ébauche concernant une chanteuse italienne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Nina Zilli Informations générales Surnom Nina Zilli Nom de naissance Maria Chiara Fraschetta Naissance 2 février 1980 (44 ans) Plaisance (Italie) Activité principale Auteure-compositrice-interprète Genre musical Funk, RnB, jazz, soul Années actives D...

 

UN resolution regarding Russian activities in Crimea This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: United Nations General Assembly resolution 73/194 – news · newspapers · books · scholar · JSTOR (March 2019) (Learn how and when to remove this message) United Nations resolution resolution adopted in 2018 UN General AssemblyResolution 73/194Date17 Decem...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Aspect of the English philosopher's teachings Portrait of Thomas Hobbes Thomas Hobbes’s moral and political philosophy is constructed around the basic premise of social and political order, explaining how humans should live in peace under a sovereign power so as to avoid conflict within the ‘state of nature’.[1] Hobbes’s moral philosophy and political philosophy are intertwined; his moral thought is based around ideas of human nature, which determine the interactions that make...

 

19th century German historian and promoter of Scientific Racism Christoph MeinersChristoph Meiners; portrait by Johann Heinrich Tischbein the Younger (c. 1772)Born(1747-07-31)July 31, 1747WarstadeDiedMay 1, 1810(1810-05-01) (aged 62)NationalityGermanEducationUniversity of GöttingenSchoolGöttingen school of historyInstitutionsUniversity of GöttingenMain interestsPolygenism Christoph Meiners (31 July 1747 – 1 May 1810) was a German racialist, philosopher, historian, and writer bor...

Kauri (Agathis australis) was extensively logged for its desirable timber. This surviving tree is called 'Te Matua Ngahere'. Forestry in New Zealand has a history starting with European settlement in the 19th century and is now an industry worth seven percent[citation needed] of annual revenue. Much of the original native forest cover was burnt off and logged, however forests have been extensively planted, predominantly with fast-growing cultivars of the Monterey Pine. Wood chips, wh...

 

Vowel sound represented by ⟨ʌ⟩ in IPA Open-mid back unrounded vowelʌIPA Number314Audio sample source · helpEncodingEntity (decimal)ʌUnicode (hex)U+028CX-SAMPAVBraille Image IPA: Vowels Front Central Back Close i y ɨ ʉ ɯ u Near-close ɪ ʏ ʊ Close-mid e ø ɘ ɵ ɤ o Mid e̞ ø̞ ə ɤ̞ o̞ Open-mid ɛ œ ɜ ɞ ʌ ɔ Near-open æ ɐ Open a ɶ ä ɑ ɒ IPA help  audio full chart template Legend: unrounded • rounded Spectrogram of ʌ The ope...

 

Pour les articles homonymes, voir Shirayuki. ShirayukiPhotographie de l'empereur Hirohito à cheval sur Shirayuki, dans les années 1930.BiographieNaissance 1921Haras de BábolnaDécès 25 octobre 1947Shimōsa Imperial Stock Farm (d)Propriétaire Hirohitomodifier - modifier le code - modifier Wikidata Shirayuki (白雪?), ou Shira-Yuki, ou encore Sirayuki (en japonais, « Neige blanche »), est un cheval que montait l'empereur du Japon Hirohito au début de l'ère Shōwa. Ce cheval...

此條目需要擴充。 (2018年7月22日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目没有列出任何参考或来源。 (2018年7月22日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 CORBA(Common Object Request Broker Architecture)又叫通用物件請求代理...

 

Swiss watchmaker This article is about the watch company. For other uses of the term swatch, see Swatch (disambiguation). For the parent group, see The Swatch Group. Swatch Ltd.Swatch store in Namba, Osaka, JapanCompany typeSubsidiaryIndustryWatchmakingFounded1983; 41 years ago (1983)HeadquartersBiel, SwitzerlandKey peopleNick Hayek Jr. (chairman, president)ProductsWristwatchesParentThe Swatch GroupSubsidiariesFlik FlakWebsiteswatch.com Swatch is a Swiss watchmaker founded i...