Disphenoid

The tetragonal and digonal disphenoids can be positioned inside a cuboid bisecting two opposite faces. Both have four equal edges going around the sides. The digonal has two pairs of congruent isosceles triangle faces, while the tetragonal has four congruent isosceles triangle faces.
A rhombic disphenoid has congruent scalene triangle faces, and can fit diagonally inside of a cuboid. It has three sets of edge lengths, existing as opposite pairs.

In geometry, a disphenoid (from Greek sphenoeides 'wedgelike') is a tetrahedron whose four faces are congruent acute-angled triangles.[1] It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron,[2] sphenoid,[3] bisphenoid,[3] isosceles tetrahedron,[4] equifacial tetrahedron,[5] almost regular tetrahedron,[6] and tetramonohedron.[7]

All the solid angles and vertex figures of a disphenoid are the same, and the sum of the face angles at each vertex is equal to two right angles. However, a disphenoid is not a regular polyhedron, because, in general, its faces are not regular polygons, and its edges have three different lengths.

Special cases and generalizations

If the faces of a disphenoid are equilateral triangles, it is a regular tetrahedron with Td tetrahedral symmetry, although this is not normally called a disphenoid. When the faces of a disphenoid are isosceles triangles, it is called a tetragonal disphenoid. In this case it has D2d dihedral symmetry. A sphenoid with scalene triangles as its faces is called a rhombic disphenoid and it has D2 dihedral symmetry. Unlike the tetragonal disphenoid, the rhombic disphenoid has no reflection symmetry, so it is chiral.[8] Both tetragonal disphenoids and rhombic disphenoids are isohedra: as well as being congruent to each other, all of their faces are symmetric to each other.

It is not possible to construct a disphenoid with right triangle or obtuse triangle faces.[4] When right triangles are glued together in the pattern of a disphenoid, they form a flat figure (a doubly-covered rectangle) that does not enclose any volume.[8] When obtuse triangles are glued in this way, the resulting surface can be folded to form a disphenoid (by Alexandrov's uniqueness theorem) but one with acute triangle faces and with edges that in general do not lie along the edges of the given obtuse triangles.

Two more types of tetrahedron generalize the disphenoid and have similar names. The digonal disphenoid has faces with two different shapes, both isosceles triangles, with two faces of each shape. The phyllic disphenoid similarly has faces with two shapes of scalene triangles.

Disphenoids can also be seen as digonal antiprisms or as alternated quadrilateral prisms.

Characterizations

A tetrahedron is a disphenoid if and only if its circumscribed parallelepiped is right-angled.[9]

We also have that a tetrahedron is a disphenoid if and only if the center in the circumscribed sphere and the inscribed sphere coincide.[10]

Another characterization states that if d1, d2 and d3 are the common perpendiculars of AB and CD; AC and BD; and AD and BC respectively in a tetrahedron ABCD, then the tetrahedron is a disphenoid if and only if d1, d2 and d3 are pairwise perpendicular.[9]

The disphenoids are the only polyhedra having infinitely many non-self-intersecting closed geodesics. On a disphenoid, all closed geodesics are non-self-intersecting.[11]

The disphenoids are the tetrahedra in which all four faces have the same perimeter, the tetrahedra in which all four faces have the same area,[10] and the tetrahedra in which the angular defects of all four vertices equal π. They are the polyhedra having a net in the shape of an acute triangle, divided into four similar triangles by segments connecting the edge midpoints.[6]

Metric formulas

The volume of a disphenoid with opposite edges of length l, m and n is given by:[12]

The circumscribed sphere has radius[12] (the circumradius):

and the inscribed sphere has radius:[12]

where V is the volume of the disphenoid and T is the area of any face, which is given by Heron's formula. There is also the following interesting relation connecting the volume and the circumradius:[12]

The squares of the lengths of the bimedians are:[12]

Other properties

If the four faces of a tetrahedron have the same perimeter, then the tetrahedron is a disphenoid.[10]

If the four faces of a tetrahedron have the same area, then it is a disphenoid.[9][10]

The centers in the circumscribed and inscribed spheres coincide with the centroid of the disphenoid.[12]

The bimedians are perpendicular to the edges they connect and to each other.[12]

Honeycombs and crystals

A space-filling tetrahedral disphenoid inside a cube. Two edges have dihedral angles of 90°, and four edges have dihedral angles of 60°.

Some tetragonal disphenoids will form honeycombs. The disphenoid whose four vertices are (-1, 0, 0), (1, 0, 0), (0, 1, 1), and (0, 1, -1) is such a disphenoid.[13][14] Each of its four faces is an isosceles triangle with edges of lengths 3, 3, and 2. It can tessellate space to form the disphenoid tetrahedral honeycomb. As Gibb (1990) describes, it can be folded without cutting or overlaps from a single sheet of a4 paper.[15]

"Disphenoid" is also used to describe two forms of crystal:

  • A wedge-shaped crystal form of the tetragonal or orthorhombic system. It has four triangular faces that are alike and that correspond in position to alternate faces of the tetragonal or orthorhombic dipyramid. It is symmetrical about each of three mutually perpendicular diad axes of symmetry in all classes except the tetragonal-disphenoidal, in which the form is generated by an inverse tetrad axis of symmetry.
  • A crystal form bounded by eight scalene triangles arranged in pairs, constituting a tetragonal scalenohedron.

Other uses

Six tetragonal disphenoids attached end-to-end in a ring construct a kaleidocycle, a paper toy that can rotate on 4 sets of faces in a hexagon. The rotation of the six disphenoids with opposite edges of length l, m and n (without loss of generality n≤l, n≤m) is physically realizable if and only if[16]

See also

References

  1. ^ Coxeter, H. S. M. (1973), Regular Polytopes (3rd ed.), Dover Publications, p. 15, ISBN 0-486-61480-8
  2. ^ Akiyama, Jin; Matsunaga, Kiyoko (2020), "An Algorithm for Folding a Conway Tile into an Isotetrahedron or a Rectangle Dihedron", Journal of Information Processing, 28 (28): 750–758, doi:10.2197/ipsjjip.28.750, S2CID 230108666.
  3. ^ a b Whittaker, E. J. W. (2013), Crystallography: An Introduction for Earth Science (and other Solid State) Students, Elsevier, p. 89, ISBN 9781483285566.
  4. ^ a b Leech, John (1950), "Some properties of the isosceles tetrahedron", The Mathematical Gazette, 34 (310): 269–271, doi:10.2307/3611029, JSTOR 3611029, MR 0038667, S2CID 125145099.
  5. ^ Hajja, Mowaffaq; Walker, Peter (2001), "Equifacial tetrahedra", International Journal of Mathematical Education in Science and Technology, 32 (4): 501–508, doi:10.1080/00207390110038231, MR 1847966, S2CID 218495301.
  6. ^ a b Akiyama, Jin (2007), "Tile-makers and semi-tile-makers", American Mathematical Monthly, 114 (7): 602–609, doi:10.1080/00029890.2007.11920450, JSTOR 27642275, MR 2341323, S2CID 32897155.
  7. ^ Demaine, Erik; O'Rourke, Joseph (2007), Geometric Folding Algorithms, Cambridge University Press, p. 424, ISBN 978-0-521-71522-5.
  8. ^ a b Petitjean, Michel (2015), "The most chiral disphenoid" (PDF), MATCH Communications in Mathematical and in Computer Chemistry, 73 (2): 375–384, MR 3242747.
  9. ^ a b c Andreescu, Titu; Gelca, Razvan (2009), Mathematical Olympiad Challenges (2nd ed.), Birkhäuser, pp. 30–31.
  10. ^ a b c d Brown, B. H. (April 1926), "Theorem of Bang. Isosceles tetrahedra", Undergraduate Mathematics Clubs: Club Topics, American Mathematical Monthly, 33 (4): 224–226, doi:10.1080/00029890.1926.11986564, JSTOR 2299548.
  11. ^ Fuchs, Dmitry [in German]; Fuchs, Ekaterina (2007), "Closed geodesics on regular polyhedra" (PDF), Moscow Mathematical Journal, 7 (2): 265–279, 350, doi:10.17323/1609-4514-2007-7-2-265-279, MR 2337883.
  12. ^ a b c d e f g Leech, John (1950), "Some properties of the isosceles tetrahedron", Mathematical Gazette, 34 (310): 269–271, doi:10.2307/3611029, JSTOR 3611029, S2CID 125145099.
  13. ^ Coxeter (1973, pp. 71–72).
  14. ^ Senechal, Marjorie (1981), "Which tetrahedra fill space?", Mathematics Magazine, 54 (5): 227–243, doi:10.2307/2689983, JSTOR 2689983, MR 0644075
  15. ^ Gibb, William (1990), "Paper patterns: solid shapes from metric paper", Mathematics in School, 19 (3): 2–4 Reprinted in Pritchard, Chris, ed. (2003), The Changing Shape of Geometry: Celebrating a Century of Geometry and Geometry Teaching, Cambridge University Press, pp. 363–366, ISBN 0-521-53162-4
  16. ^ Sloane, N. J. A. (ed.), "Sequence A338336", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation{{cite web}}: CS1 maint: overridden setting (link)

Read other articles:

هناء ادور هنا إدور، 2017 معلومات شخصية الميلاد سنة 1946 (العمر 77–78 سنة)[1]  البصرة  مواطنة العراق  الحياة العملية التعلّم كلية الحقوق جامعة بغداد المدرسة الأم جامعة بغداد  المهنة سكرتيرة جمعية الأمل العراقية سبب الشهرة سعيها لإطلاق سراح النشطاء السياسيين الجو�...

 

 

Hussein bin AbdullahPutra Mahkota YordaniaPutra Mahkota Hussein pada tahun 2015.Kelahiran28 Juni 1994 (umur 29)Amman, YordaniaWangsaHashemiteAyahAbdullah IIIbuRania al-AbdullahPasanganRajwa Al Hussein ​(m. 2024)​AgamaIslamAlmamaterKing's Academy, YordaniaUniversitas GeorgetownAkademi Militer Kerajaan Sandhurst Keluarga Kerajaan Yordania Baginda Sang RajaBaginda Sang Ratu Paduka Sang Putra Mahkota Paduka Putri Iman binti Abdullah Al - Hussein dari Yordania Pad...

 

 

Chemical compound EpiboxidineLegal statusLegal status Investigational Identifiers IUPAC name (1R,4S,6S)-6-(3-Methylisoxazol-5-yl)-7-azabicyclo[2.2.1]heptane CAS Number188895-96-7PubChem CID5747670ChemSpider4677635UNIIXI646L2ARJCompTox Dashboard (EPA)DTXSID20172258 Chemical and physical dataFormulaC10H14N2OMolar mass178.235 g·mol−13D model (JSmol)Interactive image SMILES CC1=NOC(=C1)[C@H]2C[C@@H]3CC[C@H]2N3 InChI InChI=1S/C10H14N2O/c1-6-4-10(13-12-6)8-5-7-2-3-9(8)11-7/h4,7-9,11H,2-3,5H...

Dominasi Tiongkok kedua di VietnamBắc thuộc lần thứ hai (北屬吝次二)43–544Map of the Liang dynasty in 502StatusDistrik dinasti Han Timur-Wu Timur-dinasti Jin-LiangIbu kotaJiaozhi (Vietnam: Giao Chỉ)Bahasa yang umum digunakanTionghoa LamaPemerintahanMonarkiKaisar • 43-57 Kaisar Guangwu dari Han (pertama)• 229-252 Sun Quan dari Wu Timur• 266-290 Kaisar Wu dari Jin• 420-422 Kaisar Wu dari Liu Song• 479-482 Kaisar Gao dari Qi Selatan�...

 

 

German architect and designer (1868–1940) For the Canadian writer, see Peter Behrens (writer). For the German musician and member of Trio, see Peter Behrens (musician). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2010) (Learn how and when to remove this template message) Peter BehrensPortrait of Peter Behrens by Max LiebermannBorn14 April 1868H...

 

 

City in California, United States This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Paramount, California – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this template message) City in California, United StatesParamount, CaliforniaCityLocation of Paramount in Los Ang...

Baseball team Allentown Ambassadors Founded 1997 Ballpark Bicentennial Park Based in Allentown, Pennsylvania Team Colors Red, White, Blue (1997–2000) Red, White, Black (2001–2003) League Northeast League, 1997–1999, 2003 Northern League 2000–2002 Playoff Appearances 3: 1998, 1999, 2001 Owner Peter Karoly The Allentown Ambassadors were an independent baseball team that competed in the Northeast League and the Northern League from 1997 until 2003. They played their home games at Bicente...

 

 

La Lettera dei Sei (rumeno: Scrisoarea celor șase) è stata una lettera aperta firmata l'11 marzo 1989 da Silviu Brucan, insieme ad altri cinque dissidenti comunisti rumeni (Gheorghe Apostol, Alexandru Bârlădeanu, Grigore Răceanu, Corneliu Mănescu e Constantin Pârvulescu). Questa fu diffusa nei paesi occidentali e rappresentò uno dei più importanti documenti di dissenso interno al Partito Comunista Rumeno contro la dittatura di Nicolae Ceaușescu che, nove mesi dopo la pubblicazione d...

 

 

Gnathacmaeops Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Gnathacmaeops Gnathacmaeops adalah genus kumbang tanduk panjang yang tergolong famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang telah ditebang. Referensi...

Dokhtar-i-NoshirwanRoyal enthronement scene at Dokhtar i-Noshirwan.Shown within AfghanistanShow map of AfghanistanDokhtar-i-Noshirwan (Bactria)Show map of BactriaDokhtar-i-Noshirwan (West and Central Asia)Show map of West and Central AsiaDokhtar-i-Noshirwan (South Asia)Show map of South AsiaAlternative nameDokhtar-i-NoshirwanLocationSamangan, AfghanistanCoordinates35°45′33″N 67°52′34″E / 35.759179°N 67.876073°E / 35.759179; 67.876073TypeSettlementSite ...

 

 

1949 film ChampionTheatrical release posterDirected byMark RobsonScreenplay byCarl ForemanBased onthe story Championby Ring LardnerProduced byStanley KramerStarringKirk DouglasMarilyn MaxwellArthur KennedyCinematographyFranz PlanerEdited byHarry W. GerstadMusic byDimitri TiomkinProductioncompaniesScreen PlaysStanley Kramer ProductionsDistributed byUnited ArtistsRelease date May 20, 1949 (1949-05-20)[1] Running time99 minutesCountryUnited StatesLanguageEnglishBudget$570,...

 

 

Pour les articles homonymes, voir Kronecker. Leopold KroneckerLeopold Kronecker en 1865.BiographieNaissance 7 décembre 1823Legnica (royaume de Prusse)Décès 29 décembre 1891 (à 68 ans)BerlinSépulture Ancien cimetière Saint-MatthieuNationalité prussienneFormation Université Humboldt de Berlin (1841-1843)Université rhénane Frédéric-Guillaume de Bonn (jusqu'en 1843)Université de Wrocław (1843-1844)Activités Mathématicien, professeur d'universitéFratrie Hugo KroneckerAutres...

Sekelompok Wanita sedang menari Tari Pendet Akademi tari adalah sebuah lembaga pendidikan yang mempersiapkan seniman tari, pendidikan tari dan peneliti tari.[1] Ada beberapa lembaga tari di Indonesia, yaitu Akademi Tari di Lembaga Pendidikan Kesenian Jakarta (LPKJ) dan Institut Seni Indonesia Yogyakarta.[1] Sejarah Berdirinya akademi tari didorong kuat oleh para pecinta seni budaya Indonesia untuk mengembangkan apa yang dimilikinya.[1] Walaupun jauh sebelum itu pendidi...

 

 

يونس محمود معلومات شخصية الاسم الكامل يونس محمود خلف الميلاد 3 فبراير 1983 (العمر 41 سنة)[1]الدبس، كركوك، العراق الطول 1.85 م (6 قدم 1 بوصة) مركز اللعب مهاجم الجنسية العراق  معلومات النادي النادي الحالي معتزل مسيرة الشباب سنوات فريق 1997–1999 كهرباء الدبس المسيرة الاحت�...

 

 

Town and municipality in Puerto Rico Town and Municipality in Puerto Rico, United StatesAguada Municipio de AguadaTown and MunicipalityFrom top, left to right: Main plaza and Iglesia San Francisco de Asís de la Aguada (Church of San Francisco de Asís); Ismael Chavalillo Delgado Aguada Multi-use Coliseum; Hacienda Caño Las Nasas (Caño Las Nasas Plantation) and Coloso sugarmill; and panoramic shoreline view FlagCoat of armsNicknames: La Villa de Sotomayor, Ciudad Del Descubrimiento, Vi...

Disambiguazione – Se stai cercando altri significati, vedi Montecchio (disambigua). Montecchiocomune Montecchio – Veduta LocalizzazioneStato Italia Regione Umbria Provincia Terni AmministrazioneSindacoFederico Gori dal 26-5-2014 (2º mandato dal 27-5-2019) Data di istituzione1948 TerritorioCoordinate42°39′44.42″N 12°17′16.91″E42°39′44.42″N, 12°17′16.91″E (Montecchio) Altitudine377 m s.l.m. Superficie49,22 km² Abitanti1 5...

 

 

This page is an archive of past discussions. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. Notablity of medical devices I've tagged some claims in Venowave, and I wonder if the subject is notable. Any guidance on the notability of medical devices? I don't know the particulars of this article, but does one randomized controlled trial on a device establish notability, for example? Biosthmors (talk) 20:18...

 

 

M47 パットン 性能諸元全長 8.51m全幅 3.51m全高 3.35m重量 46t懸架方式 トーションバー方式速度 48km/h行動距離 130km主砲 50口径 90mm M36副武装 12.7mm重機関銃M2×17.62mm重機関銃M1919A4×2(同軸1挺、車体正面右側1挺)装甲 101mmエンジン コンチネンタル AVDS-1790-5B4ストロークV型12気筒空冷ガソリンアリソン CD-850-4クロスドライブ式自動変速機(前進2段/後進1段)後輪駆動810hp(604kW)乗...

2009 2019 Élections européennes de 2014 en Italie 73 députés européens pour l'Italie 25 mai 2014 Corps électoral et résultats Population 60 626 442 Inscrits 50 662 460 Votants 28 991 258   57,22 %  7,8 Votes exprimés 27 448 906 Votes blancs 1 542 352 Parti démocrate – Matteo Renzi Voix 11 203 231 40,81 %   14,7 Sièges obtenus 31  10 Mouvement 5 étoiles – Beppe Gril...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. Old PermicJangkauanU+10350..U+1037F(48 titik kode)BidangSMPAksaraPerm LamaAksara utamaAbjad Perm LamaTerpakai43 titik kodeTak terpakai5 titik kode kosongRiwayat versi Unicode7.043 (+43) Catatan: [1][2] Old Permic adalah blok Unicode yang ...