Honeycomb (geometry)

Cubic honeycomb

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space. They may also be constructed in non-Euclidean spaces, such as hyperbolic honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

It is possible to fill the plane with polygons which do not meet at their corners, for example using rectangles, as in a brick wall pattern: this is not a proper tiling because corners lie part way along the edge of a neighbouring polygon. Similarly, in a proper honeycomb, there must be no edges or vertices lying part way along the face of a neighbouring cell. Interpreting each brick face as a hexagon having two interior angles of 180 degrees allows the pattern to be considered as a proper tiling. However, not all geometers accept such hexagons.

Classification

There are infinitely many honeycombs, which have only been partially classified. The more regular ones have attracted the most interest, while a rich and varied assortment of others continue to be discovered.

The simplest honeycombs to build are formed from stacked layers or slabs of prisms based on some tessellations of the plane. In particular, for every parallelepiped, copies can fill space, with the cubic honeycomb being special because it is the only regular honeycomb in ordinary (Euclidean) space. Another interesting family is the Hill tetrahedra and their generalizations, which can also tile the space.

Uniform 3-honeycombs

A 3-dimensional uniform honeycomb is a honeycomb in 3-space composed of uniform polyhedral cells, and having all vertices the same (i.e., the group of [isometries of 3-space that preserve the tiling] is transitive on vertices). There are 28 convex examples in Euclidean 3-space,[1] also called the Archimedean honeycombs.

A honeycomb is called regular if the group of isometries preserving the tiling acts transitively on flags, where a flag is a vertex lying on an edge lying on a face lying on a cell. Every regular honeycomb is automatically uniform. However, there is just one regular honeycomb in Euclidean 3-space, the cubic honeycomb. Two are quasiregular (made from two types of regular cells):

Type Regular cubic honeycomb Quasiregular honeycombs
Cells Cubic Octahedra and tetrahedra
Slab layer

The tetrahedral-octahedral honeycomb and gyrated tetrahedral-octahedral honeycombs are generated by 3 or 2 positions of slab layer of cells, each alternating tetrahedra and octahedra. An infinite number of unique honeycombs can be created by higher order of patterns of repeating these slab layers.

Space-filling polyhedra

A honeycomb having all cells identical within its symmetries is said to be cell-transitive or isochoric. In the 3-dimensional euclidean space, a cell of such a honeycomb is said to be a space-filling polyhedron.[2] A necessary condition for a polyhedron to be a space-filling polyhedron is that its Dehn invariant must be zero,[3][4] ruling out any of the Platonic solids other than the cube.

Five space-filling convex polyhedra can tessellate 3-dimensional euclidean space using translations only. They are called parallelohedra:

  1. Cubic honeycomb (or variations: cuboid, rhombic hexahedron or parallelepiped)
  2. Hexagonal prismatic honeycomb[5]
  3. Rhombic dodecahedral honeycomb
  4. Elongated dodecahedral honeycomb[6]
  5. Bitruncated cubic honeycomb or truncated octahedra[7]

cubic honeycomb

Hexagonal prismatic honeycomb

Rhombic dodecahedra

Elongated dodecahedra

Truncated octahedra
Cube
(parallelepiped)
Hexagonal prism Rhombic dodecahedron Elongated dodecahedron Truncated octahedron
3 edge-lengths 3+1 edge-lengths 4 edge-lengths 4+1 edge-lengths 6 edge-lengths

Other known examples of space-filling polyhedra include:

Other honeycombs with two or more polyhedra

Sometimes, two [11] or more different polyhedra may be combined to fill space. Besides many of the uniform honeycombs, another well known example is the Weaire–Phelan structure, adopted from the structure of clathrate hydrate crystals [12]

Weaire–Phelan structure (with two types of cells)
The periodic unit of the Weaire–Phelan structure.
P8 tiling (with left and right-handed cells)
A honeycomb by left and right-handed versions of the same polyhedron.

Non-convex 3-honeycombs

Documented examples are rare. Two classes can be distinguished:

  • Non-convex cells which pack without overlapping, analogous to tilings of concave polygons. These include a packing of the small stellated rhombic dodecahedron, as in the Yoshimoto Cube.
  • Overlapping of cells whose positive and negative densities 'cancel out' to form a uniformly dense continuum, analogous to overlapping tilings of the plane.

Hyperbolic honeycombs

In 3-dimensional hyperbolic space, the dihedral angle of a polyhedron depends on its size. The regular hyperbolic honeycombs thus include two with four or five dodecahedra meeting at each edge; their dihedral angles thus are π/2 and 2π/5, both of which are less than that of a Euclidean dodecahedron. Apart from this effect, the hyperbolic honeycombs obey the same topological constraints as Euclidean honeycombs and polychora.

The 4 compact and 11 paracompact regular hyperbolic honeycombs and many compact and paracompact uniform hyperbolic honeycombs have been enumerated.

Four regular compact honeycombs in H3

{5,3,4}

{4,3,5}

{3,5,3}

{5,3,5}
11 paracompact regular honeycombs

{6,3,3}

{6,3,4}

{6,3,5}

{6,3,6}

{4,4,3}

{4,4,4}

{3,3,6}

{4,3,6}

{5,3,6}

{3,6,3}

{3,4,4}

Duality of 3-honeycombs

For every honeycomb there is a dual honeycomb, which may be obtained by exchanging:

cells for vertices.
faces for edges.

These are just the rules for dualising four-dimensional 4-polytopes, except that the usual finite method of reciprocation about a concentric hypersphere can run into problems.

The more regular honeycombs dualise neatly:

  • The cubic honeycomb is self-dual.
  • That of octahedra and tetrahedra is dual to that of rhombic dodecahedra.
  • The slab honeycombs derived from uniform plane tilings are dual to each other in the same way that the tilings are.
  • The duals of the remaining Archimedean honeycombs are all cell-transitive and have been described by Inchbald.[13]

Self-dual honeycombs

Honeycombs can also be self-dual. All n-dimensional hypercubic honeycombs with Schläfli symbols {4,3n−2,4}, are self-dual.

See also

References

  1. ^ Grünbaum (1994). "Uniform tilings of 3-space". Geombinatorics 4(2)
  2. ^ Weisstein, Eric W. "Space-filling polyhedron". MathWorld.
  3. ^ Debrunner, Hans E. (1980), "Über Zerlegungsgleichheit von Pflasterpolyedern mit Würfeln", Archiv der Mathematik (in German), 35 (6): 583–587, doi:10.1007/BF01235384, MR 0604258, S2CID 121301319.
  4. ^ Lagarias, J. C.; Moews, D. (1995), "Polytopes that fill and scissors congruence", Discrete and Computational Geometry, 13 (3–4): 573–583, doi:10.1007/BF02574064, MR 1318797.
  5. ^ [1] Uniform space-filling using triangular, square, and hexagonal prisms
  6. ^ [2] Uniform space-filling using only rhombo-hexagonal dodecahedra
  7. ^ [3] Uniform space-filling using only truncated octahedra
  8. ^ John Conway (2003-12-22). "Voronoi Polyhedron. geometry.puzzles". Newsgroupgeometry.puzzles. Usenet: Pine.LNX.4.44.0312221226380.25139-100000@fine318a.math.Princeton.EDU.
  9. ^ X. Qian, D. Strahs and T. Schlick, J. Comput. Chem. 22(15) 1843–1850 (2001)
  10. ^ [4] O. Delgado-Friedrichs and M. O'Keeffe. Isohedral simple tilings: binodal and by tiles with <16 faces. Acta Crystallogr. (2005) A61, 358-362
  11. ^ [5] Archived 2015-06-30 at the Wayback Machine Gabbrielli, Ruggero. A thirteen-sided polyhedron which fills space with its chiral copy.
  12. ^ Pauling, Linus. The Nature of the Chemical Bond. Cornell University Press, 1960
  13. ^ Inchbald, Guy (July 1997), "The Archimedean honeycomb duals", The Mathematical Gazette, 81 (491): 213–219, doi:10.2307/3619198, JSTOR 3619198.

Further reading

  • Coxeter, H. S. M.: Regular Polytopes.
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. pp. 164–199. ISBN 0-486-23729-X. Chapter 5: Polyhedra packing and space filling
  • Critchlow, K.: Order in space.
  • Pearce, P.: Structure in nature is a strategy for design.
  • Goldberg, Michael Three Infinite Families of Tetrahedral Space-Fillers Journal of Combinatorial Theory A, 16, pp. 348–354, 1974.
  • Goldberg, Michael (1972). "The space-filling pentahedra". Journal of Combinatorial Theory, Series A. 13 (3): 437–443. doi:10.1016/0097-3165(72)90077-5.
  • Goldberg, Michael The Space-filling Pentahedra II, Journal of Combinatorial Theory 17 (1974), 375–378.
  • Goldberg, Michael (1977). "On the space-filling hexahedra". Geometriae Dedicata. 6. doi:10.1007/BF00181585. S2CID 189889869.
  • Goldberg, Michael (1978). "On the space-filling heptahedra". Geometriae Dedicata. 7 (2): 175–184. doi:10.1007/BF00181630. S2CID 120562040.
  • Goldberg, Michael Convex Polyhedral Space-Fillers of More than Twelve Faces. Geom. Dedicata 8, 491-500, 1979.
  • Goldberg, Michael (1981). "On the space-filling octahedra". Geometriae Dedicata. 10 (1–4): 323–335. doi:10.1007/BF01447431. S2CID 189876836.
  • Goldberg, Michael (1982). "On the Space-filling Decahedra". Structural Topology (7): 39–44. hdl:2099/990.
  • Goldberg, Michael (1982). "On the space-filling enneahedra". Geometriae Dedicata. 12 (3). doi:10.1007/BF00147314. S2CID 120914105.
Space Family / /
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21

Read other articles:

Electronic game of memory skill This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Simon game – news · newspapers · books · scholar · JSTOR (January 2009...

 

Oriole Park at Camden YardsMaryland has a number of major and minor professional sports franchises. Two National Football League teams play in Maryland, the Baltimore Ravens in Baltimore and the Washington Commanders in Prince George's County. The Baltimore Orioles compete as Major League Baseball franchise in Baltimore. Other professional sports franchises in the state include five affiliated minor league baseball teams, one independent league baseball team, the Baltimore Blast indoor soccer...

 

Kypello Kyprou 1994-1995 Competizione Coppa di Cipro Sport Calcio Edizione 53ª Organizzatore CFA Date dal 2 novembre 1994al 27 maggio 1995 Luogo  Cipro Partecipanti 8 Risultati Vincitore APOEL(14º titolo) Secondo Apollōn Limassol Semi-finalisti OmoniaEN Paralimni Statistiche Incontri disputati 13 Gol segnati 34 (2,62 per incontro) Cronologia della competizione 1993-1994 1995-1996 Manuale La Kypello Kyprou 1994-1995 fu la 53ª edizione della coppa nazionale cipriota. Vide...

KalitengahDesaLokasi Desa KalitengahPeta lokasi Desa KalitengahNegara IndonesiaProvinsiJawa TengahKabupatenBanjarnegaraKecamatanPurwanegaraKode Kemendagri33.04.04.2001 Luas-Kepadatan- Kalitengah adalah desa di kecamatan Purwanegara, Banjarnegara, Jawa Tengah, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Data Wilayah Administrasi Pemerintahan, dan Pulau tahun 2021 (Indonesia) Peraturan Menteri Dalam Ne...

 

English local election This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 1994 Harlow District Council election – news · newspapers · books · scholar · JSTOR (October 2019) (Learn how and when to remove this message) 1994 Harlow District Council election[1][2] ← 1992 5 May 1994 1995&#...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

Capital city of New South Wales, Australia This article is about the Australian metropolis. For the local government area, see City of Sydney. For other uses, see Sydney (disambiguation). SydneyNew South WalesSydney Opera House and Harbour BridgeQueen Victoria BuildingUniversity of SydneyBondi BeachArchibald Fountain and St Mary’s CathedralSydney CBD skylineMap of the Sydney metropolitan areaSydneyCoordinates33°52′04″S 151°12′36″E / 33.86778°S 151.21000°E...

 

VesterbygaardGeneral informationLocationVesterbygårdvej 20 4490 Jerslev SjællandCountryDenmarkCoordinates55°36′36.7″N 11°16′35.9″E / 55.610194°N 11.276639°E / 55.610194; 11.276639Construction started1840sClientC. A. Fonnesbech Vesterbygaard is a manor house and estate situated north of Tissø, Kalundborg Municipality, some 70 km west of Copenhagen, Denmark. The three-winged main building was constructed for Christen Andreas Fonnesbech in the 1840s. T...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Kaori SakamotoSakamoto pada tahun 2018Informasi PribadiMewakili negara JepangLahir9 April 2000 (umur 24)Kobe, JepangDaerah asalKobe, JepangTempat tinggalKobe, JepangPelatihSonoko Nakano Mitsuko Graham Sei KawaharaKoreograferBenoît RichaudMa...

Ne doit pas être confondu avec Rose des sables (pâtisserie). Pour les articles homonymes, voir Rose des sables (homonymie). Cet article est une ébauche concernant la géologie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Rose des sables Rose des sables (gypse), sud de la Tunisie, 47 x 33 cm. Données clés Catégorie Évaporite Minéraux accessoires Barytine Couleur blanc beige rose Dureté 2 modifier La ...

 

British Army officer Not to be confused with Peter Labilliere. Sir Peter de la BillièreGeneral Sir Peter de la BilliereBorn (1934-04-29) 29 April 1934 (age 90)Plymouth, Devon, EnglandAllegianceUnited KingdomService/branchBritish ArmyYears of service1952–1992RankGeneralService number424859Commands heldBritish Forces Middle East (1990–91)South East District (1988–90)Headquarters Wales (1985–87)Director Special Forces (1979–83)22 SAS Regiment (1972–74)Battles/warsKorean Wa...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: TÜBİTAK Space Technologies Research Institute – news · newspapers · books · scholar · JSTOR (February 2015) (Learn how and when to remove this message) TÜBİTAK Space Technologies Research InstituteTÜBİTAK Uzay Teknolojileri Araştırma EnstitüsüAbbrevia...

Brazilian footballer (1940–2022) Pele and O Rei redirect here. For the Hawaiian goddess, see Pele (deity). For the Portuguese footballer with the same nickname, see Eusébio. For other uses, see Pele (disambiguation). In this Portuguese name, the first or maternal family name is Arantes and the second or paternal family name is Nascimento. PeléPelé with Brazil in 1970BornEdson Arantes do Nascimento(1940-10-23)23 October 1940[note 1]Três Corações, BrazilDied29 December ...

 

Governo Rutte IIIIl Primo ministro Mark Rutte nel 2017. Stato Paesi Bassi Ministro-PresidenteMark Rutte(VVD) CoalizioneVVD, D66, CU, CDA Giuramento26 ottobre 2017 Dimissioni15 gennaio 2021 Governo successivo10 gennaio 2022 Rutte II Rutte IV Il Governo Rutte III (in lingua nederlandese: Kabinet-Rutte III) è stato il settantesimo Governo dei Paesi Bassi, in carica per un totale di 4 anni, 2 mesi e 14 giorni, dal 26 ottobre 2017 al 10 gennaio 2022 (sebbene dimissionario a partire dal 15 ge...

 

Australian politician For other people named Thomas Paterson, see Thomas Paterson (disambiguation). The HonourableThomas PatersonDeputy Leader of the Country PartyIn office19 November 1929 – 27 November 1937LeaderEarle PagePreceded byWilliam GibsonSucceeded byHarold ThorbyMinister for the InteriorIn office9 November 1934 – 29 November 1937Prime MinisterJoseph LyonsPreceded byEric HarrisonSucceeded byJohn McEwenMinister for Markets and TransportIn office10 December 1928&#...

Questa voce o sezione sull'argomento geografia contiene errori ortografici o sintattici oppure è scritta in una forma migliorabile. Commento: voci da evidente traduzione non sempre chiara e comprensibile Contribuisci a correggerla secondo le convenzioni della lingua italiana e del manuale di stile di Wikipedia. Segui i suggerimenti del progetto di riferimento. Transnistria (dettagli) (dettagli) Transnistria - Localizzazione Territorio a status contesoMotivo del contenziosoRepubblica au...

 

ルサイル・スタジアムLusail Stadiumاستاد لوسيلルサイル・アイコニック・スタジアムLusail Iconic Stadium 2022 FIFAワールドカップでのスタジアム 施設情報所在地 カタール ルサイル起工 2017年4月11日開場 2021年11月21日所有者 カタールサッカー協会グラウンド 天然芝設計者 Foster + Partners POPULOUS建設者 HBK Contracting 中国鉄建[1]使用チーム、大会 サッカーカタール代表2022 FIF...

 

Dăržavno părvenstvo po futbol 1931 Competizione Dăržavno părvenstvo po futbol Sport Calcio Edizione 7ª Organizzatore BFS Luogo  Bulgaria Partecipanti 12 Risultati Vincitore Atletik-Slava 23(1º titolo) Secondo  Spartak Varna Statistiche Incontri disputati 11 Gol segnati 48 (4,36 per incontro) Cronologia della competizione 1930 1932 Manuale Il Dăržavno părvenstvo po futbol 1931 fu la settima edizione della massima serie del campionato di calcio bulgaro concluso il 13 ...

Queen of England from 1396 to 1399 For other people named Isabella of Valois, see Isabella of Valois (disambiguation). Isabella of ValoisDuchess of OrléansQueen consort of EnglandTenure31 October 1396 – 29 September 1399Coronation8 January 1397Born9 November 1389Paris, FranceDied13 September 1409 (aged 19)Blois, Loir-et-Cher, FranceBurialAbbey of Saint Laumer of Blois; reinterred in the Couvent des Célestins, Paris, FranceSpouse Richard II of England ​ ​(m. 1396&#...

 

日本の政治家岩田 宙造いわた ちゅうぞう 生年月日 1875年4月7日出生地 日本・山口県熊毛郡立野村(現・光市)没年月日 (1966-02-22) 1966年2月22日(90歳没)出身校 旧制山口高等学校卒業東京帝国大学法科大学法律学科(英法)卒業称号 法学博士正三位勲一等瑞宝章配偶者 岩田華奈子子女 長男:岩田永俊次男:岩田健次郎 貴族院勅選議員在任期間 1931年12月12日 - 1946年9月30...