Bitruncated cubic honeycomb

Bitruncated cubic honeycomb
 
Type Uniform honeycomb
Schläfli symbol 2t{4,3,4}
t1,2{4,3,4}
Coxeter-Dynkin diagram
Cell type (4.6.6)
Face types square {4}
hexagon {6}
Edge figure isosceles triangle {3}
Vertex figure
(tetragonal disphenoid)
Space group
Fibrifold notation
Coxeter notation
Im3m (229)
8o:2
[[4,3,4]]
Coxeter group , [4,3,4]
Dual Oblate tetrahedrille
Disphenoid tetrahedral honeycomb
Cell:
Properties isogonal, isotoxal, isochoric
The bitruncated cubic honeycomb shown here in relation to a cubic honeycomb

The bitruncated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of truncated octahedra (or, equivalently, bitruncated cubes). It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

John Horton Conway calls this honeycomb a truncated octahedrille in his Architectonic and catoptric tessellation list, with its dual called an oblate tetrahedrille, also called a disphenoid tetrahedral honeycomb. Although a regular tetrahedron can not tessellate space alone, this dual has identical disphenoid tetrahedron cells with isosceles triangle faces.

Geometry

It can be realized as the Voronoi tessellation of the body-centred cubic lattice. Lord Kelvin conjectured that a variant of the bitruncated cubic honeycomb (with curved faces and edges, but the same combinatorial structure) was the optimal soap bubble foam. However, a number of less symmetrical structures have later been found to be more efficient foams of soap bubbles, among which the Weaire–Phelan structure appears to be the best.

The honeycomb represents the permutohedron tessellation for 3-space. The coordinates of the vertices for one octahedron represent a hyperplane of integers in 4-space, specifically permutations of (1,2,3,4). The tessellation is formed by translated copies within the hyperplane.

The tessellation is the highest tessellation of parallelohedrons in 3-space.

Projections

The bitruncated cubic honeycomb can be orthogonally projected into the euclidean plane with various symmetry arrangements. The highest (hexagonal) symmetry form projects into a nonuniform rhombitrihexagonal tiling. A square symmetry projection forms two overlapping truncated square tiling, which combine together as a chamfered square tiling.

Orthogonal projections
Symmetry p6m (*632) p4m (*442) pmm (*2222)
Solid
Frame

Symmetry

The vertex figure for this honeycomb is a disphenoid tetrahedron, and it is also the Goursat tetrahedron (fundamental domain) for the Coxeter group. This honeycomb has four uniform constructions, with the truncated octahedral cells having different Coxeter groups and Wythoff constructions. These uniform symmetries can be represented by coloring differently the cells in each construction.

Five uniform colorings by cell
Space group Im3m (229) Pm3m (221) Fm3m (225) F43m (216) Fd3m (227)
Fibrifold 8o:2 4:2 2:2 1o:2 2+:2
Coxeter group ×2
[[4,3,4]]
=[4[3[4]]]
=

[4,3,4]
=[2[3[4]]]
=

[4,31,1]
=<[3[4]]>
=

[3[4]]
 
×2
[[3[4]]]
=[[3[4]]]
Coxeter diagram
truncated octahedra 1
1:1
:
2:1:1
::
1:1:1:1
:::
1:1
:
Vertex figure
Vertex
figure
symmetry
[2+,4]
(order 8)
[2]
(order 4)
[ ]
(order 2)
[ ]+
(order 1)
[2]+
(order 2)
Image
Colored by
cell
The regular skew apeirohedron {6,4|4} contains the hexagons of this honeycomb.

The [4,3,4], , Coxeter group generates 15 permutations of uniform tessellations, 9 with distinct geometry including the alternated cubic honeycomb. The expanded cubic honeycomb (also known as the runcinated tesseractic honeycomb) is geometrically identical to the cubic honeycomb.

C3 honeycombs
Space
group
Fibrifold Extended
symmetry
Extended
diagram
Order Honeycombs
Pm3m
(221)
4:2 [4,3,4] ×1 1, 2, 3, 4,
5, 6
Fm3m
(225)
2:2 [1+,4,3,4]
↔ [4,31,1]

Half 7, 11, 12, 13
I43m
(217)
4o:2 [[(4,3,4,2+)]] Half × 2 (7),
Fd3m
(227)
2+:2 [[1+,4,3,4,1+]]
↔ [[3[4]]]

Quarter × 2 10,
Im3m
(229)
8o:2 [[4,3,4]] ×2

(1), 8, 9

The [4,31,1], , Coxeter group generates 9 permutations of uniform tessellations, 4 with distinct geometry including the alternated cubic honeycomb.

B3 honeycombs
Space
group
Fibrifold Extended
symmetry
Extended
diagram
Order Honeycombs
Fm3m
(225)
2:2 [4,31,1]
↔ [4,3,4,1+]

×1 1, 2, 3, 4
Fm3m
(225)
2:2 <[1+,4,31,1]>
↔ <[3[4]]>

×2 (1), (3)
Pm3m
(221)
4:2 <[4,31,1]> ×2

5, 6, 7, (6), 9, 10, 11

This honeycomb is one of five distinct uniform honeycombs[1] constructed by the Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

A3 honeycombs
Space
group
Fibrifold Square
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycomb diagrams
F43m
(216)
1o:2 a1 [3[4]] (None)
Fm3m
(225)
2:2 d2 <[3[4]]>
↔ [4,31,1]

×21
 1, 2
Fd3m
(227)
2+:2 g2 [[3[4]]]
or [2+[3[4]]]

×22  3
Pm3m
(221)
4:2 d4 <2[3[4]]>
↔ [4,3,4]

×41
 4
I3
(204)
8−o r8 [4[3[4]]]+
↔ [[4,3+,4]]

½×8
↔ ½×2
 (*)
Im3m
(229)
8o:2 [4[3[4]]]
↔ [[4,3,4]]
×8
×2
 5

Alternated form

Alternated bitruncated cubic honeycomb
Type Convex honeycomb
Schläfli symbol 2s{4,3,4}
2s{4,31,1}
sr{3[4]}
Coxeter diagrams
=
=
=
Cells tetrahedron
icosahedron
Vertex figure
Coxeter group [[4,3+,4]],
Dual Ten-of-diamonds honeycomb
Cell:
Properties vertex-transitive

This honeycomb can be alternated, creating pyritohedral icosahedra from the truncated octahedra with disphenoid tetrahedral cells created in the gaps. There are three constructions from three related Coxeter-Dynkin diagrams: , , and . These have symmetry [4,3+,4], [4,(31,1)+] and [3[4]]+ respectively. The first and last symmetry can be doubled as [[4,3+,4]] and [[3[4]]]+.

The dual honeycomb is made of cells called ten-of-diamonds decahedra.

Five uniform colorings
Space group I3 (204) Pm3 (200) Fm3 (202) Fd3 (203) F23 (196)
Fibrifold 8−o 4 2 2o+ 1o
Coxeter group [[4,3+,4]] [4,3+,4] [4,(31,1)+] [[3[4]]]+ [3[4]]+
Coxeter diagram
Order double full half quarter
double
quarter
Image
colored by cells

This honeycomb is represented in the boron atoms of the α-rhombohedral crystal. The centers of the icosahedra are located at the fcc positions of the lattice.[2]

Nonuniform variants with [4,3,4] symmetry and two types of truncated octahedra can be doubled by placing the two types of truncated octahedra to produce a nonuniform honeycomb with truncated octahedra and hexagonal prisms (as ditrigonal trapezoprisms). Its vertex figure is a C2v-symmetric triangular bipyramid.

This honeycomb can then be alternated to produce another nonuniform honeycomb with pyritohedral icosahedra, octahedra (as triangular antiprisms), and tetrahedra (as sphenoids). Its vertex figure has C2v symmetry and consists of 2 pentagons, 4 rectangles, 4 isosceles triangles (divided into two sets of 2), and 4 scalene triangles.

See also

Notes

  1. ^ [1], A000029 6-1 cases, skipping one with zero marks
  2. ^ Williams, 1979, p 199, Figure 5-38.

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  • Klitzing, Richard. "3D Euclidean Honeycombs o4x3x4o - batch - O16".
  • Uniform Honeycombs in 3-Space: 05-Batch
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X.

Read other articles:

Pour les articles ayant des titres homophones, voir Gray's Anatomy (homonymie). Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (août 2023). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et r...

 

 

Dinas PengadaanTentara Nasional Indonesia Angkatan DaratDibentuk21 April 2020Negara IndonesiaCabang TNI Angkatan DaratBagian dariTentara Nasional IndonesiaJulukanDisadaadTokohKomandan saat iniBrigadir Jenderal TNI Hari Pahlwantoro Dinas Pengadaan Angkatan Darat, atau disingkat Disadaad adalah sebuah organisasi yang diresmikan oleh Kepala Staf Angkatan Darat Jenderal TNI Andika Perkasa pada tanggal 21 April 2020. Pembentukan Dinas Pengadaan Angkatan Darat ini sesuai dengan amanah Peratura...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Longobardi (disambigua). Disambiguazione – Longobarda rimanda qui. Se stai cercando altri significati, vedi Longobarda (disambigua). Fonte battesimale del patriarca Callisto, 730-740, situato a Cividale del Friuli, presso il Museo diocesano cristiano e del tesoro del duomo. I Longobardi furono una popolazione germanica, protagonista tra il II e il VI secolo di una lunga migrazione che la portò dal basso corso dell'Elba f...

Surah ke-51az-Zariyat Angin Yang MenerbangkanTeks ArabTerjemahan KemenagKlasifikasiMakkiyahJuzJuz 26 (ayat 1-30) Juz 27 (ayat 31-60)Jumlah ruku3 rukuJumlah ayat60 ayat Surah Az-Zariyat (Arab: الذاريات,Angin Yang Menerbangkan) adalah surah ke-51 dalam al-Qur'an. Surah ini tergolong surah Makkiyah yang terdiri atas 60 ayat. Dinamakan Az-Zariyat yang berarti Angin Yang Menerbangkan diambil dari perkataan Az-Zariyat yang terdapat pada ayat pertama surah ini. Terjemahan Dengan nama Allah Y...

 

 

SMA Negeri 46 JakartaInformasiDidirikan10 Januari 1977 (sebagai filial dari SMA Negeri 18 Jakarta)JenisNegeriAkreditasiAKepala SekolahAchmad Safari, S.Pd., M.Si.Ketua KomiteNonie Indrayanto, S.T.Jurusan atau peminatanMIPA dan IPSRentang kelasX, XI, XII MIPA, XII IPSKurikulumKurikulum Merdeka dan Kurikulum 2013Jumlah siswa972AlamatLokasiJalan Masjid Darussalam Kav. 23-25, Blok-A, Gandaria Utara, Kebayoran Baru, Jakarta Selatan, DKI Jakarta, IndonesiaTel./Faks.021-7246695Koordina...

 

 

City in North Karnataka, India This article is about the City. For its eponymous district, see Bidar district. For Taluka (Tehsil), see Bidar taluk. See also: Bidar (disambiguation) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (February 2016) (Learn how and when to remove this message) City in KarnatakaBidarCity(clockwise from top) Bidar Fort; One...

American government official and business advocate (born 1970) Isabel Guzman27th Administrator of the Small Business AdministrationIncumbentAssumed office March 17, 2021PresidentJoe BidenDeputyDilawar SyedPreceded byJovita Carranza Personal detailsBorn1970 or 1971 (age 53–54)[1]Burbank, California, U.S.EducationUniversity of Pennsylvania (BS) Isabella Casillas Guzman[2] (born 1970) is an American government official serving as the administrator of the Sm...

 

 

List of historic UK ships and vessels Registered vessel flagMembership of the National Historic Fleet flagFlags of the National Register of Historic Vessels The National Historic Fleet is a list of historic ships and vessels located in the United Kingdom, under the National Historic Ships register. National Historic Ships UK is an advisory body which advises the Secretary of State for Culture, Media and Sport and other public bodies on ship preservation and funding priorities. As part of this...

 

 

Zoo in Tupelo, Mississippi, United States Tupelo Buffalo Park and ZooA large herd of buffalo roam the park.34°17′13″N 88°46′07″W / 34.2869°N 88.7687°W / 34.2869; -88.7687Date opened2001; 23 years ago (2001)[1]LocationTupelo, Mississippi, United StatesLand area210 acres (0.85 km2)[2]No. of animals450No. of species125OwnerDan and Shelia Franklin[1]Websitewww.tupelobuffalopark.com The Tupelo Buffalo Park and Zoo i...

الدوري الإسكتلندي الدرجة الأولى 2018–19 تفاصيل الموسم البطولة الإسكتلندية  النسخة 113  البلد المملكة المتحدة  التاريخ بداية:4 أغسطس 2018  نهاية:4 مايو 2019  المنظم الدوري الإسكتلندي للمحترفين لكرة القدم  البطل نادي روس كاونتي  مباريات ملعوبة 180   عدد المشاركين ...

 

 

Australian comedian and actor Greg FleetFleet preparing to go on stage at a Melbourne showBirth nameGregory FleetBorn1962 (age 61–62)Michigan, United StatesAlma materGeelong Grammar SchoolYears active1984–presentGenresStand-up comedyWebsiteOfficial site Gregory Fleet is an Australian comedian and actor. History Early life Fleet was born in Michigan, in the United States. His father moved the family to Australia when Greg was four. He grew up in Geelong, and as a teenage...

 

 

Methodist university in Sioux City, Iowa, US For the college of the Chinese University of Hong Kong, see Morningside College. Morningside UniversityFormer namesMorningside College (1894–2021)TypePrivate universityEstablishedDecember 5, 1894; 129 years ago (1894-12-05)Religious affiliationUnited Methodist ChurchEndowment$60 million (2020)[1]PresidentAlbert D. MosleyAcademic staff250Total staff250Students2,400LocationSioux City, Iowa, United States43° 31′ 36.7″ ...

Questa voce sull'argomento missioni spaziali è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. STS-36Emblema missione Dati della missioneOperatoreNASA NSSDC ID1990-019A SCN20512 ShuttleAtlantis Lancio28 febbraio 1990, 2:50:22 a.m. EST Luogo lancioRampa 39A Atterraggio4 marzo 1990, 10:08:44 a.m. PST Sito atterraggioEdwards Air Force Base (pista 23) Durata4 giorni, 10 ore, 18 minuti e 22 secondi Proprietà...

 

 

Wrigley Field Wrigley Field 2018.Tidigare namnWeeghman Park (1914–1920)Cubs Park (1920–1926)SmeknamnThe Friendly Confines[1]Plats1060 West Addison Street[1], Chicago, IL, USATypBasebollarenaKapacitet41 649[2]ÄgareChicago CubsUnderhållChicago CubsByggkostnad250 000 dollarArkitektZachary Taylor Davis[3]EntreprenörBlome-Sinek Company[3]PlanstorlekLeft field: 108 m (355 fot)Center field: 122 m (400 fot)Right field: 108 m (353 fot)UnderlagGräsHemmalagChicago Whales (MLB) (1...

 

 

Para otros usos de este término, véase Sopa (desambiguación). El gazpacho es una sopa fría Tarator Una sopa fría es una preparación culinaria que, siendo de textura líquida o cremosa, se sirve a temperatura inferior a la temperatura ambiente.[1]​ Muchas veces, se elabora principalmente a base de hortalizas. De esta forma, diversas cocinas del mundo poseen recetas de sopas frías, como puede ser la española con el gazpacho, el ajoblanco y el salmorejo, y la francesa con la vichy...

Legg Mason Tennis Classic 2008Sport Tennis Data9 agosto – 17 agosto Edizione40a SuperficieCemento CampioniSingolare Juan Martín del Potro Doppio Marc Gicquel / Robert Lindstedt 2007 2009 Juan Martín del Potro vincitore del singolare maschile Il Legg Mason Tennis Classic 2008 è stato un torneo di tennis giocato sul cemento È stata la 40ª edizione del Legg Mason Tennis Classic, che fa parte della categoria International Series nell'ambito dell'ATP Tour 2008. Si è giocato al William H.G....

 

 

Per popoli indigeni o aborigeni o nativi oppure autoctoni (dal latino indigena, composto di inde, ivi, e -geno, nato, corrispondente latineggiante del lemma autoctono) si intendono quelle popolazioni le cui origini della presenza, in un particolare territorio, risalgono alla preistoria. Indigeni Palikur che eseguono canti tradizionali durante una cerimonia nell'agosto 2019. Indice 1 Terminologia 2 Storia 3 Nativismo 4 Note 5 Voci correlate 6 Altri progetti 7 Collegamenti esterni Terminologia ...

 

 

American self-publishing company iUniverseParent companyAuthor SolutionsFounded1999Country of originUnited StatesHeadquarters locationBloomington, IndianaPublication typesBooksImprintsWriters Club PressOfficial websiteiuniverse.com iUniverse, founded in October 1999, is an American self-publishing company based in Bloomington, Indiana.[1] It has been owned by Author Solutions since 2008 (which has been owned by Najafi Companies since 2015). History iUniverse focuses on print-on-demand...

جهة مراكش آسفي    علم   الإحداثيات 31°22′38″N 8°16′42″W / 31.377089°N 8.278198°W / 31.377089; -8.278198   [1] تاريخ التأسيس 2015  سبب التسمية مراكش،  وآسفي  تقسيم إداري  البلد المغرب  التقسيم الأعلى المغرب  العاصمة مراكش[2]  التقسيمات الإدارية عمالة مرا�...

 

 

Voce principale: Reggina Calcio. Reggina CalcioStagione 1999-2000 Sport calcio Squadra Reggina Allenatore Franco Colomba Presidente Pasquale Foti Serie A11º Coppa ItaliaSecondo turno Maggiori presenzeCampionato: Stovini (34) Miglior marcatoreCampionato: Kallon (11)Totale: Kallon (14) StadioOreste Granillo Abbonati24 671 Maggior numero di spettatori27 272 vs Inter Minor numero di spettatori21 051 vs Cagliari Media spettatori22 744 1998-1999 2000-2001 Si invita a segu...