Weaire–Phelan structure

Weaire–Phelan structure
Weaire–Phelan structure (polyhedral cells)
Space group
Fibrifold notation
Coxeter notation
Pm3n (223)
2o
[[4,3,4]+]

In geometry, the Weaire–Phelan structure is a three-dimensional structure representing an idealised foam of equal-sized bubbles, with two different shapes. In 1993, Denis Weaire and Robert Phelan found that this structure was a better solution of the Kelvin problem of tiling space by equal volume cells of minimum surface area than the previous best-known solution, the Kelvin structure.[1]

History and the Kelvin problem

The bitruncated cubic honeycomb, a convex honeycomb whose truncated octahedron cells are deformed slightly to form the Kelvin structure

In two dimensions, the subdivision of the plane into cells of equal area with minimum average perimeter is given by the hexagonal tiling, but although the first record of this honeycomb conjecture goes back to the ancient Roman scholar Marcus Terentius Varro (116-27 BCE), it was not proven until the work of Thomas C. Hales in 1999.[2] In 1887, Lord Kelvin asked the corresponding question for three-dimensional space: how can space be partitioned into cells of equal volume with the least area of surface between them? Or, in short, what was the most efficient soap bubble foam?[3] This problem has since been referred to as the Kelvin problem.

Kelvin proposed a foam called the Kelvin structure. His foam is based on the bitruncated cubic honeycomb, a convex uniform honeycomb formed by the truncated octahedron, a space-filling convex polyhedron with 6 square faces and 8 hexagonal faces. However, this honeycomb does not satisfy Plateau's laws, formulated by Joseph Plateau in the 19th century, according to which minimal foam surfaces meet at angles at their edges, with these edges meeting each other in sets of four with angles of . The angles of the polyhedral structure are different; for instance, its edges meet at angles of on square faces, or on hexagonal faces. Therefore, Kelvin's proposed structure uses curvilinear edges and slightly warped minimal surfaces for its faces, obeying Plateau's laws and reducing the area of the structure by 0.2% compared with the corresponding polyhedral structure.[1][3]

Although Kelvin did not state it explicitly as a conjecture,[4] the idea that the foam of the bitruncated cubic honeycomb is the most efficient foam, and solves Kelvin's problem, became known as the Kelvin conjecture. It was widely believed, and no counter-example was known for more than 100 years. Finally, in 1993, Trinity College Dublin physicist Denis Weaire and his student Robert Phelan discovered the Weaire–Phelan structure through computer simulations of foam, and showed that it was more efficient, disproving the Kelvin conjecture.[1]

Since the discovery of the Weaire–Phelan structure, other counterexamples to the Kelvin conjecture have been found, but the Weaire–Phelan structure continues to have the smallest known surface area per cell of these counterexamples.[5][6][7] Although numerical experiments suggest that the Weaire–Phelan structure is optimal, this remains unproven.[8] In general, it has been very difficult to prove the optimality of structures involving minimal surfaces. The minimality of the sphere as a surface enclosing a single volume was not proven until the 19th century, and the next simplest such problem, the double bubble conjecture on enclosing two volumes, remained open for over 100 years until being proven in 2002.[9]

Description

Irregular dodecahedron
Tetrakaidecahedron

The Weaire–Phelan structure differs from Kelvin's in that it uses two kinds of cells, although they have equal volume. Like the cells in Kelvin's structure, these cells are combinatorially equivalent to convex polyhedra. One is a pyritohedron, an irregular dodecahedron with pentagonal faces, possessing tetrahedral symmetry (Th). The second is a form of truncated hexagonal trapezohedron, a species of tetrakaidecahedron with two hexagonal and twelve pentagonal faces, in this case only possessing two mirror planes and a rotoreflection symmetry. Like the hexagons in the Kelvin structure, the pentagons in both types of cells are slightly curved. The surface area of the Weaire–Phelan structure is 0.3% less than that of the Kelvin structure.[1]

Tetrastix, modeling the face-to-face chains of tetrakaidecahedron cells in the Weaire–Phelan structure

The tetrakaidecahedron cells, linked up in face-to-face chains of cells along their hexagonal faces, form chains in three perpendicular directions. A combinatorially equivalent structure to the Weaire–Phelan structure can be made as a tiling of space by unit cubes, lined up face-to-face into infinite square prisms in the same way to form a structure of interlocking prisms called tetrastix. These prisms surround cubical voids which form one fourth of the cells of the cubical tiling; the remaining three fourths of the cells fill the prisms, offset by half a unit from the integer grid aligned with the prism walls. Similarly, in the Weaire–Phelan structure itself, which has the same symmetries as the tetrastix structure, 1/4 of the cells are dodecahedra and 3/4 are tetrakaidecahedra.[10]

The polyhedral honeycomb associated with the Weaire–Phelan structure (obtained by flattening the faces and straightening the edges) is also referred to loosely as the Weaire–Phelan structure. It was known well before the Weaire–Phelan structure was discovered, but the application to the Kelvin problem was overlooked.[11]

Applications

In physical systems

A close-up of the mold used for the growth of ordered liquid foams.

Experiments have shown that, with favorable boundary conditions, equal-volume bubbles spontaneously self-assemble into the Weaire–Phelan structure.[12][13]

The associated polyhedral honeycomb is found in two related geometries of crystal structure in chemistry. Where the components of the crystal lie at the centres of the polyhedra it forms one of the Frank–Kasper phases, the A15 phase.[14]

Where the components of the crystal lie at the corners of the polyhedra, it is known as the "Type I clathrate structure". Gas hydrates formed by methane, propane and carbon dioxide at low temperatures have a structure in which water molecules lie at the nodes of the Weaire–Phelan structure and are hydrogen bonded together, and the larger gas molecules are trapped in the polyhedral cages.[11] Some alkali metal hydrides silicides and germanides also form this structure, with silicon or germanium at nodes, and alkali metals in cages.[1][15][16]

In architecture

Beijing National Aquatics Centre

The Weaire–Phelan structure is the inspiration for the design by Tristram Carfrae of the Beijing National Aquatics Centre, the 'Water Cube', for the 2008 Summer Olympics.[17]

See also

References

  1. ^ a b c d e Weaire, D.; Phelan, R. (1994), "A counter-example to Kelvin's conjecture on minimal surfaces", Phil. Mag. Lett., 69 (2): 107–110, Bibcode:1994PMagL..69..107W, doi:10.1080/09500839408241577.
  2. ^ Hales, T. C. (2001), "The honeycomb conjecture", Discrete & Computational Geometry, 25 (1): 1–22, doi:10.1007/s004540010071, hdl:2027.42/42423, MR 1797293
  3. ^ a b Lord Kelvin (Sir William Thomson) (1887), "On the Division of Space with Minimum Partitional Area" (PDF), Philosophical Magazine, 24 (151): 503, doi:10.1080/14786448708628135, archived from the original (PDF) on 2021-11-26, retrieved 2012-06-15.
  4. ^ Weaire & Phelan (1994) write that it is "implicit rather than directly stated in Kelvin's original papers"
  5. ^ Sullivan, John M. (1999), "The geometry of bubbles and foams", Foams and emulsions (Cargèse, 1997), NATO Advanced Science Institutes Series E: Applied Sciences, vol. 354, Kluwer, pp. 379–402, MR 1688327
  6. ^ Gabbrielli, Ruggero (1 August 2009), "A new counter-example to Kelvin's conjecture on minimal surfaces", Philosophical Magazine Letters, 89 (8): 483–491, Bibcode:2009PMagL..89..483G, doi:10.1080/09500830903022651, ISSN 0950-0839, S2CID 137653272
  7. ^ Freiberger, Marianne (24 September 2009), "Kelvin's bubble burst again", Plus Magazine, University of Cambridge, retrieved 4 July 2017
  8. ^ Oudet, Édouard (2011), "Approximation of partitions of least perimeter by Γ-convergence: around Kelvin's conjecture", Experimental Mathematics, 20 (3): 260–270, doi:10.1080/10586458.2011.565233, MR 2836251, S2CID 2945749
  9. ^ Morgan, Frank (2009), "Chapter 14. Proof of Double Bubble Conjecture", Geometric Measure Theory: A Beginner's Guide (4th ed.), Academic Press.
  10. ^ Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008), "Understanding the Irish Bubbles", The Symmetries of Things, Wellesley, Massachusetts: A K Peters, p. 351, ISBN 978-1-56881-220-5, MR 2410150
  11. ^ a b Pauling, Linus (1960), The Nature of the Chemical Bond (3rd ed.), Cornell University Press, p. 471
  12. ^ Gabbrielli, R.; Meagher, A.J.; Weaire, D.; Brakke, K.A.; Hutzler, S. (2012), "An experimental realization of the Weaire-Phelan structure in monodisperse liquid foam" (PDF), Phil. Mag. Lett., 92 (1): 1–6, Bibcode:2012PMagL..92....1G, doi:10.1080/09500839.2011.645898, S2CID 25427974.
  13. ^ Ball, Philip (2011), "Scientists make the 'perfect' foam: Theoretical low-energy foam made for real", Nature, doi:10.1038/nature.2011.9504, S2CID 136626668.
  14. ^ Frank, F. C.; Kasper, J. S. (1958), "Complex alloy structures regarded as sphere packings. I. Definitions and basic principles" (PDF), Acta Crystallogr., 11 (3): 184–190, doi:10.1107/s0365110x58000487. Frank, F. C.; Kasper, J. S. (1959), "Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures", Acta Crystallogr., 12 (7): 483–499, doi:10.1107/s0365110x59001499.
  15. ^ Kasper, J. S.; Hagenmuller, P.; Pouchard, M.; Cros, C. (December 1965), "Clathrate structure of silicon Na8Si46 and NaxSi136 (x < 11)", Science, 150 (3704): 1713–1714, Bibcode:1965Sci...150.1713K, doi:10.1126/science.150.3704.1713, PMID 17768869, S2CID 21291705
  16. ^ Cros, Christian; Pouchard, Michel; Hagenmuller, Paul (December 1970), "Sur une nouvelle famille de clathrates minéraux isotypes des hydrates de gaz et de liquides, interprétation des résultats obtenus", Journal of Solid State Chemistry, 2 (4): 570–581, Bibcode:1970JSSCh...2..570C, doi:10.1016/0022-4596(70)90053-8
  17. ^ Fountain, Henry (August 5, 2008), "A Problem of Bubbles Frames an Olympic Design", New York Times

Read other articles:

The Great PassagePoster Jepang Asli.Nama lainJepang舟を編むHepburnFune o Amu SutradaraYuya IshiiProduserTomoo TsuchiiKimitaka GokaFumitsugu IkedaYasuyuki IwanamiDitulis olehKansaku WatanabeBerdasarkanThe Great Passageoleh Shiwon MiuraPemeranRyuhei MatsudaAoi MiyazakiJoe OdagiriKaoru KobayashiGo KatoPenata musikTakashi WatanabeSinematograferJunichi FujisawaPenyuntingShinichi FushimaPerusahaanproduksiFilmmakersLittle More Co.DistributorShochikuTanggal rilis 13 April 2013 (2...

 

American professor This biography of a living person relies too much on references to primary sources. Please help by adding secondary or tertiary sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially libelous or harmful.Find sources: Josephine Donovan – news · newspapers · books · scholar · JSTOR (August 2017) (Learn how and when to remove this template message) Jo...

 

Voce principale: Brescia Calcio. Associazione calcio BresciaStagione 1972-1973 Sport calcio Squadra Brescia Allenatore Giuliano Piovanelli (1ª-19ª) Renato Gei (20ª-38ª) Presidente Oscar Comini Serie B17º Coppa ItaliaPrimo turno Maggiori presenzeCampionato: Inselvini (38) Miglior marcatoreCampionato: Marino (8) StadioStadio Mario Rigamonti 1971-1972 1973-1974 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Associazione Calcio Brescia ne...

Airport in Mrčevac, MontenegroTivat AirportAerodrom TivatАеродром ТиватIATA: TIVICAO: LYTVSummaryAirport typePublicOperatorAirports of MontenegroServesTivatLocationMrčevac, MontenegroElevation AMSL20 ft / 6 mCoordinates42°24′17″N 18°43′24″E / 42.40472°N 18.72333°E / 42.40472; 18.72333Websitemontenegroairports.comMapTIVLocation of airport in MontenegroRunways Direction Length Surface ft m 14/32 8,202 2,500 Asphalt Statistics (20...

 

Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan untuk penjelasan ilmiah; bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Wikipedia tidak memberikan konsultasi medis. Jika Anda perlu bantuan atau hendak berobat, berkonsultasilah dengan tenaga kesehatan profesional. Tinitus adalah telinga berdering, berdesir, atau jenis suara yang tampaknya berasal di telinga atau kepala. Dalam banyak kasus itu bukan masa...

 

This article is about the town in Albania. For the musician, see Andrew Manze. Municipal unit in Durrës, AlbaniaManëzMunicipal unitStreet in the municipality after the local elections in 2011ManëzCoordinates: 41°26′N 19°35′E / 41.433°N 19.583°E / 41.433; 19.583Country AlbaniaCountyDurrësMunicipalityDurrësPopulation (2011) • Municipal unit6,652Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST)Postal Code2011Area Code(0)572 Man...

American college basketball season 1998–99 North Carolina Tar Heels men's basketballNCAA tournament, Round of 64ConferenceAtlantic Coast ConferenceRankingCoachesNo. 18APNo. 13Record24–10 (10–6 ACC)Head coachBill Guthridge (2nd season)Assistant coaches Phil Ford (11th season) Dave Hanners (9th season) Pat Sullivan (2nd season) Home arenaDean Smith CenterSeasons← 1997–981999–2000 → 1998–99 ACC men's basketball standings vte Conf Overall Team...

 

ديمقراطيةمعلومات عامةصنف فرعي من نظام سياسي جزء من أنظمة أفلاطون الخمس ممثلة بـ أنواع الديمقراطية لديه جزء أو أجزاء ديمقراطية مباشرةديمقراطية تمثيليةالهيئة الانتخابية النقيض أوتوقراطية تعديل - تعديل مصدري - تعديل ويكي بيانات جزء من سلسلة مقالات حولالديمقراطية تاريخ انت...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2019) مجموعة جيوش الوسط   الدولة ألمانيا النازية  الإنشاء 1941  الانحلال 1944  جزء من فيرماخت  الاشتبا�...

Ghanaian stew Kontomire Stew with eggs and plantain Kontomire stew is a stew made from cocoyam leaves (known in the Akan language as kontomire), commonly prepared in the home and very popular in Ghanaian cuisine.[1] In Ghana, kontomire stew is served with variety of dishes,[2][3] including steamed rice, cooked yam and plantain.[4] Its English designation palava sauce is said to originate from the people of Elmina.[5][6] Ingredients Preparing kon...

 

Washington State Senate elections, 2018 ← 2016 November 6, 2018 2020 → 25 of 49 seats in the Washington State Senate25 seats needed for a majority   Majority party Minority party   Leader Karen Keiser Mark Schoesler Party Democratic Republican Leader's seat 33rd-Des Moines 9th-Ritzville Last election 24[a] 25[a] Seats before 25 24 Seats won 28[a] 21[a] Seat change 3 3 Popular vote 982,741 516,476 Pe...

 

Political party in Greece Drassi ΔράσηLeaderTheodoros SkylakakisGeneral SecretaryMelina DaskalakisSpokespersonPanagiotis MichalopoulosFounderStefanos ManosFounded2009 (2009)Dissolved2019 (2019)Preceded byThe LiberalsMerged intoNew DemocracyHeadquarters98Α, Vasilissis Sofias Avenue, 11528, AthensIdeologyLiberalism[1]PostnationalismDecentralizationEconomic liberalismMeritocracyNeoliberalismPolitical positionCentre to Centre-rightEuropean affiliationAll...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Les Dix Commandements musical – news · newspapers · books · scholar · JSTOR (December 2021) (Learn how and when to remove this message) MusicalLes Dix CommandementsCover of DVD releaseMusicPascal ObispoLyricsLionel Florence and Patrice GuiraoProductionsEli...

 

Questa voce sull'argomento documenti della Chiesa cattolica è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. La lettera apostolica è un tipo di documento ufficiale redatto dal pontefice della Chiesa cattolica. Si colloca al quinto grado di importanza, al di sotto: della costituzione apostolica; dell'enciclica del motu proprio e dell'esortazione apostolica; ma al di sopra: della lettera semplice; e del ...

 

Christ healing the paralytic at Capernaum (Yesus menyembuhkan orang lumpuh di Kapernaum) karya Bernhard Rode 1780. Yesus menyembuhkan orang lumpuh adalah suatu peristiwa mukjizat yang diperbuat oleh Yesus Kristus yang dicatat dalam bagian Perjanjian Baru di Alkitab Kristen. Peristiwa ini secara khusus dicatat dalam tiga kitab Injil Sinoptik, yaitu pada Injil Matius pasal 9,[1] Injil Markus pasal 2,[2] dan Injil Lukas pasal 5.[3] Injil Yohanes tidak memuat peristiwa ini...

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2010) (Learn how and when to remove this message) Walter Butler of Ballinakill Castle, Roscrea (c. 1600 – 25 December 1634) was a military officer, who served as a colonel (Oberst) in the Imperial Army under Albrecht von Wallenstein and was involved in Wallenstein's assassination in 1634. Ancestry Walte...

 

Voce principale: Associazione Sportiva Dilettantistica Sangiovannese 1927. Associazione Calcio SangiovanneseStagione 2004-2005Sport calcio Squadra Sangiovannese Allenatore Maurizio Sarri Presidente Arduino Casprini Serie C18º posto nel girone A. Maggiori presenzeCampionato: Stamilla (35) Miglior marcatoreCampionato: Bongiorni (9) 2003-2004 2005-2006 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Associazione Calcio Sangiovannese nelle compe...

 

Siegel der Gemeinschaft Gedenktafel mit den Namen der Gründer Die Société Notre-Dame de Montréal (vollständiger Name: Société de Notre-Dame de Montréal pour la conversion des Sauvages de la Nouvelle-France, dt. „Gesellschaft Unserer Lieben Frau von Montreal für die Bekehrung der Wilden Neufrankreichs“) war eine religiöse Laiengemeinschaft, die von 1639 bis 1663 existierte. Sie war verantwortlich für die Gründung der Siedlung Ville-Marie in Neufrankreich, aus der sich die kanad...

Gerli PadarGerli Padar représentant l'Estonie lors du Concours Eurovision de la chanson 2007 (demi-finale).BiographieNaissance 6 novembre 1979 (44 ans)HaljalaNationalité estonienneActivité ChanteusePériode d'activité Depuis 1994Fratrie Tanel PadarAutres informationsGenre artistique Popmodifier - modifier le code - modifier Wikidata Gerli Padar (née le 6 novembre 1979 à Haljala, Estonie) est une artiste estonienne. Elle est surtout connue pour son interprétation de la chanson Part...

 

Region in the U.S. state of North Carolina The Piedmont Crescent, also known as the Piedmont Urban Crescent, is a large, polycentric urbanized region in the U.S. state of North Carolina that forms the northern section of the rapidly developing Piedmont Atlantic megalopolis (or megaregion), a conurbation also known as the I-85 Boombelt, which extends from the Raleigh area in North Carolina, southwards to Atlanta, Georgia in the southeastern United States.[1] The region includes seven o...