Regular skew apeirohedron

The mucube is a regular skew apeirohedron.

In geometry, a regular skew apeirohedron is an infinite regular skew polyhedron. They have either skew regular faces or skew regular vertex figures.

History

In 1926 John Flinders Petrie took the concept of a regular skew polygons, polygons whose vertices are not all in the same plane, and extended it to polyhedra. While apeirohedra are typically required to tile the 2-dimensional plane, Petrie considered cases where the faces were still convex but were not required to lie flat in the plane, they could have a skew polygon vertex figure.

Petrie discovered two regular skew apeirohedra, the mucube and the muoctahedron.[1] Harold Scott MacDonald Coxeter derived a third, the mutetrahedron, and proved that the these three were complete. Under Coxeter and Petrie's definition, requiring convex faces and allowing a skew vertex figure, the three were not only the only skew apeirohedra in 3-dimensional Euclidean space, but they were the only skew polyhedra in 3-space as there Coxeter showed there were no finite cases.

In 1967[2] Garner investigated regular skew apeirohedra in hyperbolic 3-space with Petrie and Coxeters definition, discovering 31[note 1] regular skew apeirohedra with compact or paracompact symmetry.

In 1977[3][1] Grünbaum generalized skew polyhedra to allow for skew faces as well. Grünbaum discovered an additional 23[note 2] skew apeirohedra in 3-dimensional Euclidean space and 3 in 2-dimensional space which are skew by virtue of their faces. 12 of Grünbaum's polyhedra were formed using the blending operation on 2-dimensional apeirohedra, and the other 11 were pure, i.e. could not be formed by a non-trivial blend. Grünbaum conjectured that this new list was complete for the parameters considered.

In 1985[4][1] Dress found an additional pure regular skew apeirohedron in 3-space, and proved that with this additional skew apeirohedron the list was complete.

Regular skew apeirohedra in Euclidean 3-space

Petrie-Coxeter polyhedra

The three Euclidean solutions in 3-space are {4,6|4}, {6,4|4}, and {6,6|3}. John Conway named them mucube, muoctahedron, and mutetrahedron respectively for multiple cube, octahedron, and tetrahedron.[5]

  1. Mucube: {4,6|4}: 6 squares about each vertex (related to cubic honeycomb, constructed by cubic cells, removing two opposite faces from each, and linking sets of six together around a faceless cube.)
  2. Muoctahedron: {6,4|4}: 4 hexagons about each vertex (related to bitruncated cubic honeycomb, constructed by truncated octahedron with their square faces removed and linking hole pairs of holes together.)
  3. Mutetrahedron: {6,6|3}: 6 hexagons about each vertex (related to quarter cubic honeycomb, constructed by truncated tetrahedron cells, removing triangle faces, and linking sets of four around a faceless tetrahedron.)

Coxeter gives these regular skew apeirohedra {2q,2r|p} with extended chiral symmetry [[(p,q,p,r)]+] which he says is isomorphic to his abstract group (2q,2r|2,p). The related honeycomb has the extended symmetry [[(p,q,p,r)]].[6]

Compact regular skew apeirohedra
Coxeter group
symmetry
Apeirohedron
{p,q|l}
Image Face
{p}
Hole
{l}
Vertex
figure
Related
honeycomb

[[4,3,4]]
[[4,3,4]+]
{4,6|4}
Mucube

animation

t0,3{4,3,4}
{6,4|4}
Muoctahedron

animation

2t{4,3,4}

[[3[4]]]
[[3[4]]+]
{6,6|3}
Mutetrahedron

animation

q{4,3,4}

Grünbaum-Dress polyhedra

Skew honeycombs

There are 3 regular skew apeirohedra of full rank, also called regular skew honeycombs, that is skew apeirohedra in 2-dimensions. As with the finite skew polyhedra of full rank, all three of these can be obtained by applying the Petrie dual to planar polytopes, in this case the three regular tilings.[7][8][9]

Alternatively they can be constructed using the apeir operation on regular polygons.[10] While the Petrial is used the classical construction, it does not generalize well to higher ranks. In contrast, the apeir operation is used to construct higher rank skew honeycombs.[11]

The apeir operation takes the generating mirrors of the polygon, ρ0 and ρ1, and uses them as the mirrors for the vertex figure of a polyhedron, the new vertex mirror w is then a point located where the initial vertex of the polygon (or anywhere on the mirror ρ1 other than its intersection with ρ0). The new initial vertex is placed at the intersection of the mirrors ρ0 and ρ1. Thus the apeir polyhedron is generated by ⟨w, ρ0, ρ0.[12]

Skew honeycombs Schläfli symbol Faces Image Petrie dual Apeir of
Petrial square tiling {4,4}π {∞,4}4 zigzags Square tiling Square
Petrial triangular tiling {3,6}π {∞,6}3 zigzags Triangular tiling Hexagon
Petrial hexagonal tiling {6,3}π {∞,3}6 zigzags Hexagonal tiling Triangle

Blended apeirohedra

{3,6}#{} with the edges of one face highlighted in red

For any two regular polytopes, P and Q, a new polytope can be made by the following process:

  • Start with the Cartesian product of the vertices of P with the vertices of Q.
  • Add edges between any two vertices p0 × q0 and p1 × q1 iff there is an edge between p0 and p1 in P and an edge between q0 and q1 in Q. (If Q has no edges then add a virtual edge connecting its vertex to itself.)
  • Similarly add faces to every set of vertices all incident on the same face in both P and Q. (If Q has no faces then add a virtual face connecting its edge to itself.)
  • Repeat as such for all ranks of proper elements.
  • From the resulting polytope, select one connected component.

For regular polytopes the last step is guaranteed to produce a unique result. This new polytope is called the blend of P and Q and is represented P#Q.

Equivalently the blend can be obtained by positioning P and Q in orthogonal spaces and taking composing their generating mirrors pairwise.

Blended polyhedra in 3-dimensional space can be made by blending 2-dimensional polyhedra with 1-dimensional polytopes. The only 2-dimensional polyhedra are the 6 honeycombs (3 Euclidean tilings and 3 skew honeycombs):

The only 1-dimensional polytopes are:

Each pair between these produces a valid distinct regular skew apeirohedron in 3-dimensional Euclidean space, for a total of 12[note 2] blended skew apeirohedra.

Since the skeleton of the square tiling is bipartite, two of these blends, {4, 4}#{} and {4, 4}π#{}, are combinatrially equivalent to their non-blended counterparts.

Pure apeirohedra

Skewed muoctahedronPetrial mucubeMuoctahedronMucubePetrial muoctahedronHalved mucbePetrial halved mucubeSkewed Petrial muoctahedronMutetrahedronPetrial mutetrahedronTrihelical square tilingTetrahelical triangular tilingRectificationRectificationPetrie dualPetrie dualPetrie dualPetrie dualPetrie dualPetrie dualPetrie dualDual polyhedronDual polyhedronSecond-order facettingSecond-order facettingSecond-order facettingSecond-order facettingSecond-order facettingSecond-order facettingPetrial cubePetrial tetrahedronTetrahedronCube
Some relationships between the 12 pure apeirohedra in 3D Euclidean space
  • π represents the Petrial
  • δ represents the dual
  • η represents halving
  • φ represents facetting
  • σ represents skewing
  • r represents rectification

A polytope is considered pure if it cannot be expressed as a non-trivial blend of two polytopes. A blend is considered trivial if it contains the result as one of the components. Alternatively a pure polytope is one whose symmetry group contains no non-trivial subrepresentation.[13]

There are 12 regular pure apeirohedra in 3 dimensions. Three of these are the Petrie-Coxeter polyhedra:

  • {4,6 | 4}
  • {6,4 | 4}
  • {6,6 | 3}

Three more are obtained as the Petrials of the Petrie-Coxeter polyhedra:

  • {4,6 | 4}π = {∞, 4}6,4
  • {6,4 | 4}π = {∞, 6}4,4
  • {6,6 | 3}π = {∞, 6}6,3

Three additional pure apeirohedra can be formed with finite skew polygons as faces:

These 3 are closed under the Wilson operations. Meaning that each can be constructed from any other by some combination of the Petrial and dual operations. {6,6}4 is self-dual and {6,4}6 is self-Petrial.

Regular skew apeirohedra in hyperbolic 3-space

The compact skew apeirohedron {4,6 | 5}

In 1967, C. W. L. Garner identified 31 hyperbolic skew apeirohedra with regular skew polygon vertex figures, found by extending the Petrie-Coxeter polyhedra to hyperbolic space.[14]

These represent 14 compact and 17[note 1] paracompact regular skew polyhedra in hyperbolic space, constructed from the symmetry of a subset of linear and cyclic Coxeter groups graphs of the form [[(p,q,p,r)]], These define regular skew polyhedra {2q,2r|p} and dual {2r,2q|p}. For the special case of linear graph groups r = 2, this represents the Coxeter group [p,q,p]. It generates regular skews {2q,4|p} and {4,2q|p}. All of these exist as a subset of faces of the convex uniform honeycombs in hyperbolic space.

The skew apeirohedron shares the same antiprism vertex figure with the honeycomb, but only the zig-zag edge faces of the vertex figure are realized, while the other faces make holes.

14 Compact regular skew apeirohedra
Coxeter
group
Apeirohedron
{p,q|l}
Face
{p}
Hole
{l}
Honeycomb Vertex
figure
Apeirohedron
{p,q|l}
Face
{p}
Hole
{l}
Honeycomb Vertex
figure

[3,5,3]
{10,4|3}
2t{3,5,3}
{4,10|3}
t0,3{3,5,3}

[5,3,5]
{6,4|5}
2t{5,3,5}
{4,6|5}
t0,3{5,3,5}

[(4,3,3,3)]
{8,6|3}
ct{(4,3,3,3)}
{6,8|3}
ct{(3,3,4,3)}

[(5,3,3,3)]
{10,6|3}
ct{(5,3,3,3)}
{6,10|3}
ct{(3,3,5,3)}

[(4,3,4,3)]
{8,8|3}
ct{(4,3,4,3)}
{6,6|4}
ct{(3,4,3,4)}

[(5,3,4,3)]
{8,10|3}
ct{(4,3,5,3)}
{10,8|3}
ct{(5,3,4,3)}

[(5,3,5,3)]
{10,10|3}
ct{(5,3,5,3)}
{6,6|5}
ct{(3,5,3,5)}
17 Paracompact regular skew apeirohedra
Coxeter
group
Apeirohedron
{p,q|l}
Face
{p}
Hole
{l}
Honeycomb Vertex
figure
Apeirohedron
{p,q|l}
Face
{p}
Hole
{l}
Honeycomb Vertex
figure

[4,4,4]
{8,4|4}
2t{4,4,4}
{4,8|4}
t0,3{4,4,4}

[3,6,3]
{12,4|3}
2t{3,6,3}
{4,12|3}
t0,3{3,6,3}

[6,3,6]
{6,4|6}
2t{6,3,6}
{4,6|6}
t0,3{6,3,6}

[(4,4,4,3)]
{8,6|4}
ct{(4,4,3,4)}
{6,8|4}
ct{(3,4,4,4)}

[(4,4,4,4)]
{8,8|4}
q{4,4,4}

[(6,3,3,3)]
{12,6|3}
ct{(6,3,3,3)}
{6,12|3}
ct{(3,3,6,3)}

[(6,3,4,3)]
{12,8|3}
ct{(6,3,4,3)}
{8,12|3}
ct{(4,3,6,3)}

[(6,3,5,3)]
{12,10|3}
ct{(6,3,5,3)}
{10,12|3}
ct{(5,3,6,3)}

[(6,3,6,3)]
{12,12|3}
ct{(6,3,6,3)}
{6,6|6}
ct{(3,6,3,6)}

See also

Notes

  1. ^ a b Garner mistakenly counts {8,8|4} twice giving a count of 18 paracompact cases and 32 total, but only listing 17 paracompact and 31 total.
  2. ^ a b Polytopes produced as a non-trivial blend have a degree of freedom corresponding to the relative scaling of their components. For this reason some authors count these as infinite families rather than a single polytope. This article counts two polytopes as equal when there is an affine map of full rank between them.

References

  1. ^ a b c McMullen & Schulte (1997:449–450)
  2. ^ Garner (1967)
  3. ^ Grünbaum (1977)
  4. ^ Dress (1985)
  5. ^ The Symmetry of Things, 2008, Chapter 23 Objects with Primary Symmetry, Infinite Platonic Polyhedra, pp. 333–335
  6. ^ Coxeter, Regular and Semi-Regular Polytopes II 2.34)
  7. ^ Grünbaum (1977)
  8. ^ Dress (1985)
  9. ^ McMullen & Schulte (1997)
  10. ^ McMullen (2004)
  11. ^ McMullen (2004)
  12. ^ McMullen (2004)
  13. ^ McMullen & Schulte (2002)
  14. ^ Garner (1967)

Bibliography

  • Garner (1967), "Regular Skew Polyhedra in Hyperbolic Three-Space", Canadian Journal of Mathematics, 19: 1179–1186, doi:10.4153/CJM-1967-106-9
  • Grünbaum, Branko (1977), "Regular polyhedra - old and new" (PDF), Aequationes Mathematicae, 16 (1–2): 1–20, doi:10.1007/BF01836414, S2CID 125049930
  • McMullen, Peter; Schulte, Egon (1997). "Regular Polytopes in Ordinary Space" (PDF). Discrete & Computational Geometry. 17 (47): 449–478. doi:10.1007/PL00009304.
  • McMullen, Peter; Schulte, Egon (2002), Abstract Regular Polytopes, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge: Cambridge University Press, doi:10.1017/CBO9780511546686, ISBN 0-521-81496-0, MR 1965665
  • McMullen, Peter (2004). "Regular Polytopes of Full Rank" (PDF). Discrete Computational Geometry. 32: 1–35. doi:10.1007/s00454-004-0848-5.
  • Dress, Andreas (1985). "A combinatorial theory of Grünbaum's new regular polyhedra, Part II: Complete enumeration". Aequationes Mathematicae. 29: 222–243. doi:10.1007/BF02189831. S2CID 121260389.
  • Petrie–Coxeter Maps Revisited PDF, Isabel Hubard, Egon Schulte, Asia Ivic Weiss, 2005
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5,
  • Peter McMullen, Four-Dimensional Regular Polyhedra, Discrete & Computational Geometry September 2007, Volume 38, Issue 2, pp 355–387
  • Coxeter, Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 2) H.S.M. Coxeter, "The Regular Sponges, or Skew Polyhedra", Scripta Mathematica 6 (1939) 240–244.
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.)
    • Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33–62, 1937.

Read other articles:

You can help expand this article with text translated from the corresponding article in Russian. (January 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears unreliable or lo...

 

SMA Negeri 1 Ngawi InformasiDidirikanBerdiri sejak 30 Juli 1980 sebagai SMA Negeri Ngawi berdasarkan No. SK. Pendirian = 0206/O/1980. Berubah nama menjadi SMAN 1 Ngawi pada 24 Agustus 1989 berdasarkan: No. SK. Operasional = 0507/08/1989JenisNegeriAkreditasiA [1] No. SK. Akreditasi = 1347/BAN-SM/SK/2021 Tanggal SK. Akreditasi = 8 Desember 2021Nomor Pokok Sekolah Nasional20508480MotoQualified Dream SchoolKepala SekolahSunarta S.Pd Jurusan atau peminatanIPA dan IPSKurikulumKurikulum...

 

Historic district in Minnesota, United States United States historic placeNorthrop Mall Historic DistrictU.S. National Register of Historic PlacesU.S. Historic district Northrop Mall facing northShow map of MinnesotaShow map of the United StatesLocationUniversity of Minnesota, Minneapolis, MinnesotaBuilt1910-1971ArchitectCass Gilbert; Clarence H. Johnston Sr.; Morell and Nichols; Roger Martin; Magney, Tusler and Setter; Hammel Green and Abrahamson, Inc., et alArchitectural styleCity Beau...

Bukit SundiKecamatanHamparan Persawahan di Nagari Kinari Bukit SundiNegara IndonesiaProvinsiSumatera BaratKabupatenSolokPemerintahan • Camat-Populasi • Total- jiwaKode Kemendagri13.02.08 Kode BPS1303090 Luas- km²Nagari/kelurahan5 Bukit Sundi (ditulis juga sebagai Bukik Sundi) adalah sebuah kecamatan di Kabupaten Solok, Sumatera Barat, Indonesia. Kecamatan ini berjarak sekitar 33 kilometer berkendara dari ibukota kabupaten Solok ke arah utara atau 8 kilometer teng...

 

Cet article est une ébauche concernant l’automobile et le jeu vidéo. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Volant d'une voiture équipé d'un coussin gonflable de sécurité, airbag, et d'un avertisseur sonore mais sans bouton Volant d'un véhicule équipé d'un dispositif de coussin gonflable, d'un avertisseur sonore et de boutons de commandes/consignes audio et vitesse Dans une automobile, le vol...

 

The Leopard (Il Gattopardo)Poster film pertamaSutradaraLuchino ViscontiProduserGoffredo LombardoPietro NotarianniDitulis olehPasquale Festa CampanileEnrico MedioliMassimo FranciosaLuchino ViscontiSuso Cecchi d'AmicoBerdasarkanThe Leopardby Giuseppe Tomasi di LampedusaPemeranBurt LancasterClaudia CardinaleAlain DelonSerge ReggianiMario GirottiPierre ClementiPenata musikNino RotaSinematograferGiuseppe RotunnoPenyuntingMario SerandreiDistributorTitanus (Italia - bioskop)Medusa Entertainmen...

King of Assyria, 1074/3–1056 BCE Ashur-bel-kalaKing of AssyriaKing of the Four Corners of the WorldKing of the Middle Assyrian EmpireReign1074–1056 BCPredecessorAsharid-apal-EkurSuccessorEriba-Adad IISpouseBabylonian princess, daughter of Adad-apla-iddina[1]FatherTiglath-Pileser IAššūr-bēl-kala, inscribed maš-šur-EN-ka-la and meaning “Aššur is lord of all,”[2] was the king of Assyria 1074/3–1056 BC, the 89th to appear on the Assyrian Kinglist. He was the son ...

 

Torrance CoombsCoombs, 2012Lahir14 Juni 1983 (umur 40)Vancouver, British Columbia, KanadaPekerjaanAktorTahun aktif1994 - sekarangSitus webhttp://www.torrancecoombs.com torrancecoombs.com Torrance Coombs (lahir 14 Juni 1983) adalah aktor televisi, teater, dan film asal Kanada. Filmografi Film The Familiar (2009) sebagai Sam Matheson; film pendek Good Image Media (2009) sebagai Pj; film pendek Serial televisi Supernatural (2007; one episode) sebagai Mitch Battlestar Galactica (2008; ...

 

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Waidhofen an der Ybbs Waidhofen an der Ybbs adalah sebuah kota di Austria Hilir, Austria. Kota ini memiliki luas sebesar 131.52 km². Kota ini memiliki populasi sebesar 11.662 jiwa. Pranala luar www.waidhofen.at lbsKota dan distrik (Bezirke) di Austria HilirKrems an der Donau · St. Pölten · ...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

Part of a series onRail transport History Company types Infrastructure Management Rail yard Railway station list Railway track Maintenance Track gauge Variable gauge Gauge conversion Dual gauge Service and rolling stock Operating Locomotives Steam locomotives Trains Railroad cars Railway couplings Couplers by country Coupler conversion Dual coupling Wheelset Bogie (truck) Passenger train Commuter rail Regional rail Inter-city rail High-speed railways Passenger traffic terminology Named passe...

5th Roman emperor from AD 54 to 68 For other uses, see Nero (disambiguation). NeroHead of Nero from an oversized statue. Glyptothek, MunichRoman emperorReign13 October 54 – 9 June 68PredecessorClaudiusSuccessorGalbaBorn15 December AD 37Antium, Italy, Roman EmpireDied9 June AD 68 (aged 30)outside Rome, ItalyBurialMausoleum of the Domitii Ahenobarbi, Pincian Hill, RomeSpousesClaudia OctaviaPoppaea SabinaStatilia MessalinaSporusPythagorasIssueClaudia AugustaNamesLucius Domitius Aheno...

 

الدوري العراقي الممتاز السلسلة دوري نجوم العراق  الموسم 1997–98 البلد العراق  الفرق 16   الفائز الشرطة(اللقب الثاني) هابطون الموصلالكوتالصناعة بطولة الأندية الآسيوية الشرطة كأس أبطال الكؤوس الآسيوية الزوراء هداف الدوري محمود مجيد(22 هدف) 1996–97 1998–99 تعديل مصدري - تعديل...

 

Ski area in Vermont, United States Bolton ValleyThe Main Lodge at Bolton Valley ResortLocationBolton, Vermont, U.S.Nearest major cityBurlington, Vermont, U.S. (21 miles)Coordinates44°25′11″N 72°51′00″W / 44.419621°N 72.849998°W / 44.419621; -72.849998Vertical1,625 feet (495 m)[1]Top elevation3,150 feet (960 m)[2]Base elevation1,446 feet (441 m)[2]Skiable area165 acres (0.67 km2)Trails71[3]Lift system6...

Confederate Navy sailors Salvador Pirates was the name given to the band of Confederate Navy sailors that attempted to seize a Panama Railroad coastal steamer on the high seas. Their intent was then to arm her and attack the Pacific Mail steamers and the American whalers in the North Pacific. In spring of 1864, the Confederate Navy ordered Captain Thomas Egenton Hogg and his command to take passage on board a coastal steamer in Panama City, seize her on the high seas, arm her and attack the P...

 

Cet article est une ébauche concernant l’art et une chronologie ou une date. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Chronologies Données clés 1853 1854 1855  1856  1857 1858 1859Décennies :1820 1830 1840  1850  1860 1870 1880Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du S...

 

Questa voce o sezione sull'argomento centri abitati del Trentino-Alto Adige non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Sfruzcomune Sfruz – Veduta LocalizzazioneStato Italia Regione Trentino-Alto Adige Provincia Trento AmministrazioneSindacoAndrea Biasi (lista civica) dal 7-11-2016 TerritorioCoordinate46°20′N 11°07′E4...

アラバマ物語 To Kill a Mockingbird ポスター(1963)監督 ロバート・マリガン脚本 ホートン・フート原作 ハーパー・リー製作 アラン・J・パクラ出演者 グレゴリー・ペックメアリー・バダムフィリップ・アルフォード音楽 エルマー・バーンスタイン撮影 ラッセル・ハーラン編集 アーロン・ステル配給 ユニバーサル映画公開 1962年12月25日 1963年6月22日上映時間 129分製作国 アメ�...

 

Nuclear physics Nucleus Nucleons p n Nuclear matter Nuclear force Nuclear structure Nuclear reaction Models of the nucleus Liquid drop Nuclear shell model Interacting boson model Ab initio Nuclides' classification Isotopes – equal Z Isobars – equal A Isotones – equal N Isodiaphers – equal N − Z Isomers – equal all the above Mirror nuclei – Z ↔ N Stable Magic Even/odd Halo Borromean Nuclear stability Binding energy p–n ratio Drip line Island of stability Valley...