Peter McMullen

Peter McMullen
Born (1942-05-11) 11 May 1942 (age 82)
NationalityBritish
Alma materTrinity College, Cambridge
Known forUpper bound theorem, McMullen problem
Scientific career
FieldsDiscrete geometry
InstitutionsWestern Washington University (1968–1969)
University College London

Peter McMullen (born 11 May 1942)[1] is a British mathematician, a professor emeritus of mathematics at University College London.[2]

Education and career

McMullen earned bachelor's and master's degrees from Trinity College, Cambridge, and studied at the University of Birmingham, where he received his doctorate in 1968.[3] He taught at Western Washington University from 1968 to 1969.[4] In 1978 he earned his Doctor of Science at University College London where he still works as a professor emeritus. In 2006 he was accepted as a corresponding member of the Austrian Academy of Sciences.[5]

Contributions

McMullen is known for his work in polyhedral combinatorics and discrete geometry, and in particular for proving what was then called the upper bound conjecture and now is the upper bound theorem. This result states that cyclic polytopes have the maximum possible number of faces among all polytopes with a given dimension and number of vertices.[6] McMullen also formulated the g-conjecture, later the g-theorem of Louis Billera, Carl W. Lee, and Richard P. Stanley, characterizing the f-vectors of simplicial spheres.[7]

The McMullen problem is an unsolved question in discrete geometry named after McMullen, concerning the number of points in general position for which a projective transformation into convex position can be guaranteed to exist. It was credited to a private communication from McMullen in a 1972 paper by David G. Larman.[8]

He is also known for his 1960s drawing, by hand, of a 2-dimensional representation of the Gosset polytope 421, the vertices of which form the vectors of the E8 root system.[9]

Awards and honours

McMullen was invited to speak at the 1974 International Congress of Mathematicians in Vancouver; his contribution there had the title Metrical and combinatorial properties of convex polytopes.[10]

He was elected as a foreign member of the Austrian Academy of Sciences in 2006.[11] In 2012 he became an inaugural fellow of the American Mathematical Society.[12]

Selected publications

Research papers
  • McMullen, P. (1970), "The maximum numbers of faces of a convex polytope", Mathematika, 17 (2): 179–184, doi:10.1112/s0025579300002850, MR 0283691, S2CID 122025424.
  • —— (1975), "Non-linear angle-sum relations for polyhedral cones and polytopes", Mathematical Proceedings of the Cambridge Philosophical Society, 78 (2): 247–261, Bibcode:1975MPCPS..78..247M, doi:10.1017/s0305004100051665, MR 0394436, S2CID 63778391.
  • —— (1993), "On simple polytopes", Inventiones Mathematicae, 113 (2): 419–444, Bibcode:1993InMat.113..419M, doi:10.1007/BF01244313, MR 1228132, S2CID 122228607.
Survey articles
  • ——; Schneider, Rolf (1983), "Valuations on convex bodies", Convexity and its applications, Basel: Birkhäuser, pp. 170–247, MR 0731112. Updated as "Valuations and dissections" (by McMullen alone) in Handbook of convex geometry (1993), MR1243000.
Books

References

  1. ^ Peter McMullen, Peter M. Gruber, retrieved 2013-11-03.
  2. ^ UCL IRIS information system, accessed 2013-11-05.
  3. ^ McMullen, Peter; Schulte, Egon (12 December 2002), Abstract and regular polytopes, ISBN 9780521814966, retrieved 2022-05-11
  4. ^ Peter McMullen Collection, 1967-1968, Special Collections, Wilson Library, Western Washington University, retrieved from worldcat.org 2013-11-03.
  5. ^ "Austrian Academy of Sciences: Peter McMullen". Retrieved 2022-05-11.
  6. ^ Ziegler, Günter M. (1995), Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer, p. 254, ISBN 9780387943657, Finally, in 1970 McMullen gave a complete proof of the upper-bound conjecture – since then it has been known as the upper bound theorem. McMullen's proof is amazingly simple and elegant, combining to key tools: shellability and h-vectors.
  7. ^ Gruber, Peter M. (2007), Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Berlin: Springer, p. 265, ISBN 978-3-540-71132-2, MR 2335496, The problem of characterizing the f-vectors of convex polytopes is ... far from a solution, but there are important contributions towards it. For simplicial convex polytopes a characterization was proposed by McMullen in the form of his celebrated g-conjecture. The g-conjecture was proved by Billera and Lee and Stanley.
  8. ^ Larman, D. G. (1972), "On sets projectively equivalent to the vertices of a convex polytope", The Bulletin of the London Mathematical Society, 4: 6–12, doi:10.1112/blms/4.1.6, MR 0307040
  9. ^ "A picture of the E8 root system". American Institute of Mathematics. Retrieved 2022-05-11.
  10. ^ ICM 1974 proceedings Archived 2017-12-04 at the Wayback Machine.
  11. ^ Awards, Appointments, Elections & Honours, University College London, June 2006, retrieved 2013-11-03.
  12. ^ List of AMS fellows, retrieved 2013-11-03.

Read other articles:

Federasi Sepak Bola KroasiaUEFADidirikan13 Juni 1912Kantor pusatZagrebBergabung dengan FIFA17 Juli 1941 (Sebagai Negara Merdeka Kroasia)3 Juli 1992 (Sebagai Kroasia)Bergabung dengan UEFA16 Juni 1993PresidenMarijan KustićWebsitewww.hns-cff.hr Federasi Sepak Bola Kroasia (Kroasia: Hrvatski nogometni savezcode: hr is deprecated , HNS) adalah badan pengatur sepak bola di Kroasia. Dibentuk pada tahun 1912 yang berbasis di ibu kota Zagreb. Organisasi ini adalah anggota FIFA dan UEFA, dan bertanggu...

 

 

Artikel ini bukan mengenai Punch and Judy. Judy and PunchPoster rilis teatrikalSutradaraMirrah FoulkesProduser Michele Bennett Nash Edgerton Danny Gabai SkenarioMirrah FoulkesCerita Tom Punch Lucy Punch Eddy Moretti Mirrah Foulkes Pemeran Mia Wasikowska Damon Herriman Tom Budge Benedict Hardie Gillian Jones Terry Norris Brenda Palmer Lucy Velik Penata musikFrançois TétazSinematograferStefan DuscioPenyuntingDany CooperPerusahaanproduksi Blue-Tongue Films Vice Media Pariah Productions S...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Namada Chilume – news · newspapers · books · scholar · JSTOR (December 2019) (Learn how and when to remove this template message) Place in Karnataka, IndiaNamada chilumeCountry IndiaStateKarnatakaDistrictTumkuruLanguages • OfficialKannadaTime z...

Football stadium in Middlesbrough, North Yorkshire, England This article is about the football ground in Middlesbrough. For other uses, see Riverside Stadium (disambiguation). Riverside StadiumRiversideUEFA Full nameRiverside StadiumFormer namesCellnet Riverside StadiumBT Cellnet Riverside StadiumCaptain James Cook Stadium[2]LocationMiddlesbrough, England TS3 6RSCoordinates54°34′42″N 1°13′1″W / 54.57833°N 1.21694°W / 54.57833; -1.21694Public transit...

 

 

Türkiye 1.Lig 1969-1970 Competizione Türkiye 1.Lig Sport Calcio Edizione 12ª Organizzatore TFF Luogo  Turchia Partecipanti 16 Formula Girone unico Sito web tff.org Risultati Vincitore  Fenerbahçe(6º titolo) Retrocessioni  Gençlerbirliği Altınordu Statistiche Miglior marcatore Fethi Heper (13) Incontri disputati 240 Gol segnati 414 (1,73 per incontro) Cronologia della competizione 1968-69 1970-71 Manuale L'edizione 1969-1970 della Türkiye 1.Lig vide la v...

 

 

Pour les articles homonymes, voir Dunand. Jean DunandBiographieNaissance 20 mai 1877LancyDécès 7 juin 1942 (à 65 ans)14e arrondissement de ParisNationalités française (à partir de 1922)suisseActivités Sculpteur, peintre, designerSignaturemodifier - modifier le code - modifier Wikidata Artiste pluridisciplinaire et figure majeure de l'Art déco, Jean Dunand est un décorateur, sculpteur, dinandier, ébéniste, laqueur et peintre suisse naturalisé français, né le 20 mai 187...

Pre-dive safety checks carried out by two-diver dive teams Divers doing a buddy check - This is usually done before entering the water, but there may be reasons to check again in the water if something does not appear to be right. The buddy check is a procedure carried out by scuba divers using the buddy system where each diver checks that the other's diving equipment is configured and functioning correctly just before the start of the dive.[1] A study of pre-dive equipment checks do...

 

 

King of Macedonia, Antipatrid dynasty For his uncle, see Cassander (brother of Antipater). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cassander – news · newspapers · books · scholar · JSTOR (April 2021) (Learn how and when to remove this message) CassanderStater of Cassander. The reverse depicts a lion ...

 

 

British fashion advisors and TV presenters Trinny Woodall and Susannah ConstantineTrinny Woodall (left) and Susannah Constantine (right)BornLondon, EnglandOccupationFashion journalistsWebsitehttp://www.trinnyandsusannah.com Trinny Woodall and Susannah Constantine are two British fashion advisors, presenters and authors. They originally joined to write a weekly style column in The Daily Telegraph which lasted for seven years, but they are best known for presenting the BBC television series Wha...

American human sexuality writer (born 1980) Audacia RayBorn (1980-04-25) April 25, 1980 (age 44)Occupation(s)Sex worker rights activist, blogger, author, media punditKnown forFounder of Red Umbrella Project Audacia Ray (born April 25, 1980) is an American human sexuality and culture author, who focuses on the influences of modern technology. She is a sex worker rights advocate and leads media skills workshops intended to train sex workers to deal with interviews.[1] Ray's co...

 

 

Multi-use path along the waterfront in Toronto, Canada Martin Goodman TrailThe Humber Bay Arch Bridge is part of the trailLength56 km (35 mi)LocationTorontoEstablished1984Userunning, jogging, cycling and inline skatingSeasonYear-round The Martin Goodman Trail is a 56 km (35 mi)[1][2] multi-use path[3][4] along the waterfront in Toronto, Ontario, Canada. It traverses the entire lake shore from one end of the city to the other, from Humber Bay...

 

 

Norhayati Andris Ketua DPRD Kalimantan Utara Ke-2PetahanaMulai menjabat 11 Oktober 2019Ketua Sementara: 4 September-11 Oktober 2019WakilAndi HamzahAndi M. Akbar M. DjuarzahPendahuluMarthen SablonPenggantiPetahanaAnggota DPRD Kalimantan UtaraPetahanaMulai menjabat 4 September 2019Menjabat bersama Daftar Achmad Usman Jufri Budiman Yancong Rakhmat Sewa Siti Laela Supaad Hadianto Syamsuddin Arfah Muhammad Hatta Khaeruddin Arief Hidayat Markus Sakke Muddain Daerah pemilihanKAL...

The Gran Canaria blue chaffinch is endemic to the Canary Islands. This is a list of the bird species recorded in the Canary Islands. The avifauna of the Canary Islands include a total of 394 species, of which seven are endemic, and nine have been introduced by humans. One listed species is extinct. This list's taxonomic treatment (designation and sequence of orders, families and species) and nomenclature (common and scientific names) follow the conventions of The Clements Checklist of Birds ...

 

 

Involuntary, forceful expulsion of stomach contents, typically via the mouth Not to be confused with Regurgitation (digestion). Vomit, Emesis, Heaving, Puke, and Throw up redirect here. For other uses, see Vomit (disambiguation). For the butterfly genus, see Emesis (genus). For the 2021 Argentine film, see PussyCake. For the sailing terms, see Heaving to and Careening. For the municipality of Albania, see Pukë. For the style of graffiti, see Throw up (graffiti). For other uses, see Puke (dis...

 

 

Defunct large Austrian bank This article is about the Austrian bank founded in 1855. For other entities named Creditanstalt or Kreditanstalt (lit. 'credit institution'), see Kreditanstalt (disambiguation). Creditanstalt AGCreditanstalt head office during the 1920s and early 1930s on the Freyung, in 2014 as Bank Austria KunstforumIndustryFinancial servicesFounded1855FounderAnselm von RothschildFateMerged with Bank Austria in 2002SuccessorBank Austria-CreditanstaltHeadquartersVienna, Aust...

Tanda kehormatan di Brunei Darussalam terdiri atas Bintang-Bintang Kebesaran (tanda kehormatan) dan Pingat-Pingat Kehormatan (medali kehormatan). Keduanya dianugerahkan oleh Sultan Brunei atas dasar jasa, terutama kontribusi kepada negara. Pemberian beberapa Bintang Kebesaran juga termasuk pemberian gelar kehormatan, yang kemudian menjadi unsur nama pribadi penerima dalam persuratan resmi dan pemberitaan dalam media nasional Brunei. Bintang-Bintang Kebesaran dan Pingat-Pingat Kehormatan berad...

 

 

Pour les articles homonymes, voir Adoption (homonymie). Cet article est une ébauche concernant le droit. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Orphelinat en Colombie, une infirmière nourrit un enfant tout en s'occupant de deux autres jeunes enfants L'adoption internationale est l'adoption d'une personne d'un pays par une personne ou un couple d'un autre pays. C'est une cause classique de conflit de l...

 

 

География Японии Часть света Азия Регион Восточная Азия Координаты 36° с. ш., 138° в. д. Площадь 62-я в мире 377 976,41 км² вода: 12,06901% % суша: 87,93099% % Береговая линия 29 751 км Границы 0 Высшая точка 3776 м (гора Фудзи) Низшая точка −4 м (Хатирогата) Крупнейшая река Синано (река) (367 км) Кру...

2020 夏季奧林匹克運動會日期2021年7月24日至8月1日屆數18地況硬地地點有明網球森林公園[1] ← 2016 · 夏季奧林匹克運動會 · 2024 → 2020年夏季奥林匹克运动会网球比赛单打男子女子双打男子女子混合查论编 2020年夏季奧林匹克運動會網球比賽,是因2019冠狀病毒病疫情而延期至2021年舉行的第32屆夏季奧林匹克運動會的其中一個比賽項目,於2021年7月24�...

 

 

Rasio bendera: 1:2 Bendera Tuvalu dari 1995 hingga 1997 Bendera Tuvalu dikeluarkan ketika negara ini merdeka tahun 1978, setelah berpisah dari Kepulauan Gilbert (sekarang Kiribati) tahun 1976. Fitur Seperti dependensi Britania lainnya, bendera Tuvalu adalah bendera biru didasarkan pada Bendera Persatuan, yang diletakkan di kanton kiri atas bendera. Bendera sebelumnya (dengan Kepulauan Gilbert) juga didasarkan pada Bendera Persatuan tetapi dengan lambang yang dibuat oleh Sir Arthur Grimble ta...