In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.[1][2]
The two sets and may be thought of as a coloring of the graph with two colors: if one colors all nodes in blue, and all nodes in red, each edge has endpoints of differing colors, as is required in the graph coloring problem.[3][4] In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: after one node is colored blue and another red, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color.
One often writes to denote a bipartite graph whose partition has the parts and , with denoting the edges of the graph. If a bipartite graph is not connected, it may have more than one bipartition;[5] in this case, the notation is helpful in specifying one particular bipartition that may be of importance in an application. If , that is, if the two subsets have equal cardinality, then is called a balanced bipartite graph.[3] If all vertices on the same side of the bipartition have the same degree, then is called biregular.
Examples
When modelling relations between two different classes of objects, bipartite graphs very often arise naturally. For instance, a graph of football players and clubs, with an edge between a player and a club if the player has played for that club, is a natural example of an affiliation network, a type of bipartite graph used in social network analysis.[6]
Another example where bipartite graphs appear naturally is in the (NP-complete) railway optimization problem, in which the input is a schedule of trains and their stops, and the goal is to find a set of train stations as small as possible such that every train visits at least one of the chosen stations. This problem can be modeled as a dominating set problem in a bipartite graph that has a vertex for each train and each station and an edge for each pair of a station and a train that stops at that station.[7]
A third example is in the academic field of numismatics. Ancient coins are made using two positive impressions of the design (the obverse and reverse). The charts numismatists produce to represent the production of coins are bipartite graphs.[8]
Cycle graphs with an even number of vertices are bipartite.[4]
Every planar graph whose faces all have even length is bipartite.[9] Special cases of this are grid graphs and squaregraphs, in which every inner face consists of 4 edges and every inner vertex has four or more neighbors.[10]
The complete bipartite graph on m and n vertices, denoted by Kn,m is the bipartite graph , where U and V are disjoint sets of size m and n, respectively, and E connects every vertex in U with all vertices in V. It follows that Km,n has mn edges.[11] Closely related to the complete bipartite graphs are the crown graphs, formed from complete bipartite graphs by removing the edges of a perfect matching.[12]
Hypercube graphs, partial cubes, and median graphs are bipartite. In these graphs, the vertices may be labeled by bitvectors, in such a way that two vertices are adjacent if and only if the corresponding bitvectors differ in a single position. A bipartition may be formed by separating the vertices whose bitvectors have an even number of ones from the vertices with an odd number of ones. Trees and squaregraphs form examples of median graphs, and every median graph is a partial cube.[13]
Properties
Characterization
Bipartite graphs may be characterized in several different ways:
A graph is bipartite if and only if it is 2-colorable, (i.e. its chromatic number is less than or equal to 2).[3]
A graph is bipartite if and only if every edge belongs to an odd number of bonds, minimal subsets of edges whose removal increases the number of components of the graph.[16]
A graph is bipartite if and only if the spectrum of the graph is symmetric.[17]
Kőnig's theorem and perfect graphs
In bipartite graphs, the size of minimum vertex cover is equal to the size of the maximum matching; this is Kőnig's theorem.[18][19] An alternative and equivalent form of this theorem is that the size of the maximum independent set plus the size of the maximum matching is equal to the number of vertices. In any graph without isolated vertices the size of the minimum edge cover plus the size of a maximum matching equals the number of vertices.[20] Combining this equality with Kőnig's theorem leads to the facts that, in bipartite graphs, the size of the minimum edge cover is equal to the size of the maximum independent set, and the size of the minimum edge cover plus the size of the minimum vertex cover is equal to the number of vertices.
Another class of related results concerns perfect graphs: every bipartite graph, the complement of every bipartite graph, the line graph of every bipartite graph, and the complement of the line graph of every bipartite graph, are all perfect. Perfection of bipartite graphs is easy to see (their chromatic number is two and their maximum clique size is also two) but perfection of the complements of bipartite graphs is less trivial, and is another restatement of Kőnig's theorem. This was one of the results that motivated the initial definition of perfect graphs.[21] Perfection of the complements of line graphs of perfect graphs is yet another restatement of Kőnig's theorem, and perfection of the line graphs themselves is a restatement of an earlier theorem of Kőnig, that every bipartite graph has an edge coloring using a number of colors equal to its maximum degree.
According to the strong perfect graph theorem, the perfect graphs have a forbidden graph characterization resembling that of bipartite graphs: a graph is bipartite if and only if it has no odd cycle as a subgraph, and a graph is perfect if and only if it has no odd cycle or its complement as an induced subgraph. The bipartite graphs, line graphs of bipartite graphs, and their complements form four out of the five basic classes of perfect graphs used in the proof of the strong perfect graph theorem.[22] It follows that any subgraph of a bipartite graph is also bipartite because it cannot gain an odd cycle.[23]
Degree
For a vertex, the number of adjacent vertices is called the degree of the vertex and is denoted . The degree sum formula for a bipartite graph states that[24]
The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts and . For example, the complete bipartite graph K3,5 has degree sequence . Isomorphic bipartite graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a bipartite graph; in some cases, non-isomorphic bipartite graphs may have the same degree sequence.
The bipartite realization problem is the problem of finding a simple bipartite graph with the degree sequence being two given lists of natural numbers. (Trailing zeros may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the digraph.)
Relation to hypergraphs and directed graphs
The biadjacency matrix of a bipartite graph is a (0,1) matrix of size that has a one for each pair of adjacent vertices and a zero for nonadjacent vertices.[25] Biadjacency matrices may be used to describe equivalences between bipartite graphs, hypergraphs, and directed graphs.
A hypergraph is a combinatorial structure that, like an undirected graph, has vertices and edges, but in which the edges may be arbitrary sets of vertices rather than having to have exactly two endpoints. A bipartite graph may be used to model a hypergraph in which U is the set of vertices of the hypergraph, V is the set of hyperedges, and E contains an edge from a hypergraph vertex v to a hypergraph edge e exactly when v is one of the endpoints of e. Under this correspondence, the biadjacency matrices of bipartite graphs are exactly the incidence matrices of the corresponding hypergraphs. As a special case of this correspondence between bipartite graphs and hypergraphs, any multigraph (a graph in which there may be two or more edges between the same two vertices) may be interpreted as a hypergraph in which some hyperedges have equal sets of endpoints, and represented by a bipartite graph that does not have multiple adjacencies and in which the vertices on one side of the bipartition all have degree two.[26]
A similar reinterpretation of adjacency matrices may be used to show a one-to-one correspondence between directed graphs (on a given number of labeled vertices, allowing self-loops) and balanced bipartite graphs, with the same number of vertices on both sides of the bipartition. For, the adjacency matrix of a directed graph with n vertices can be any (0,1) matrix of size , which can then be reinterpreted as the adjacency matrix of a bipartite graph with n vertices on each side of its bipartition.[27] In this construction, the bipartite graph is the bipartite double cover of the directed graph.
Algorithms
Testing bipartiteness
It is possible to test whether a graph is bipartite, and to return either a two-coloring (if it is bipartite) or an odd cycle (if it is not) in linear time, using depth-first search. The main idea is to assign to each vertex the color that differs from the color of its parent in the depth-first search forest, assigning colors in a preorder traversal of the depth-first-search forest. This will necessarily provide a two-coloring of the spanning forest consisting of the edges connecting vertices to their parents, but it may not properly color some of the non-forest edges. In a depth-first search forest, one of the two endpoints of every non-forest edge is an ancestor of the other endpoint, and when the depth first search discovers an edge of this type it should check that these two vertices have different colors. If they do not, then the path in the forest from ancestor to descendant, together with the miscolored edge, form an odd cycle, which is returned from the algorithm together with the result that the graph is not bipartite. However, if the algorithm terminates without detecting an odd cycle of this type, then every edge must be properly colored, and the algorithm returns the coloring together with the result that the graph is bipartite.[28]
Alternatively, a similar procedure may be used with breadth-first search in place of depth-first search. Again, each node is given the opposite color to its parent in the search forest, in breadth-first order. If, when a vertex is colored, there exists an edge connecting it to a previously-colored vertex with the same color, then this edge together with the paths in the breadth-first search forest connecting its two endpoints to their lowest common ancestor forms an odd cycle. If the algorithm terminates without finding an odd cycle in this way, then it must have found a proper coloring, and can safely conclude that the graph is bipartite.[29]
For the intersection graphs of line segments or other simple shapes in the Euclidean plane, it is possible to test whether the graph is bipartite and return either a two-coloring or an odd cycle in time , even though the graph itself may have up to edges.[30]
Odd cycle transversal is an NP-completealgorithmic problem that asks, given a graph G = (V,E) and a number k, whether there exists a set of k vertices whose removal from G would cause the resulting graph to be bipartite.[31] The problem is fixed-parameter tractable, meaning that there is an algorithm whose running time can be bounded by a polynomial function of the size of the graph multiplied by a larger function of k.[32] The name odd cycle transversal comes from the fact that a graph is bipartite if and only if it has no odd cycles. Hence, to delete vertices from a graph in order to obtain a bipartite graph, one needs to "hit all odd cycle", or find a so-called odd cycle transversal set. In the illustration, every odd cycle in the graph contains the blue (the bottommost) vertices, so removing those vertices kills all odd cycles and leaves a bipartite graph.
The edge bipartization problem is the algorithmic problem of deleting as few edges as possible to make a graph bipartite and is also an important problem in graph modification algorithmics. This problem is also fixed-parameter tractable, and can be solved in time ,[33] where k is the number of edges to delete and m is the number of edges in the input graph.
A matching in a graph is a subset of its edges, no two of which share an endpoint. Polynomial time algorithms are known for many algorithmic problems on matchings, including maximum matching (finding a matching that uses as many edges as possible), maximum weight matching, and stable marriage.[34] In many cases, matching problems are simpler to solve on bipartite graphs than on non-bipartite graphs,[35] and many matching algorithms such as the Hopcroft–Karp algorithm for maximum cardinality matching[36] work correctly only on bipartite inputs.
As a simple example, suppose that a set of people are all seeking jobs from among a set of jobs, with not all people suitable for all jobs. This situation can be modeled as a bipartite graph where an edge connects each job-seeker with each suitable job.[37] A perfect matching describes a way of simultaneously satisfying all job-seekers and filling all jobs; Hall's marriage theorem provides a characterization of the bipartite graphs which allow perfect matchings. The National Resident Matching Program applies graph matching methods to solve this problem for U.S. medical student job-seekers and hospital residency jobs.[38]
Bipartite graphs are extensively used in modern coding theory, especially to decode codewords received from the channel. Factor graphs and Tanner graphs are examples of this. A Tanner graph is a bipartite graph in which the vertices on one side of the bipartition represent digits of a codeword, and the vertices on the other side represent combinations of digits that are expected to sum to zero in a codeword without errors.[40] A factor graph is a closely related belief network used for probabilistic decoding of LDPC and turbo codes.[41]
In computer science, a Petri net is a mathematical modeling tool used in analysis and simulations of concurrent systems. A system is modeled as a bipartite directed graph with two sets of nodes: A set of "place" nodes that contain resources, and a set of "event" nodes which generate and/or consume resources. There are additional constraints on the nodes and edges that constrain the behavior of the system. Petri nets utilize the properties of bipartite directed graphs and other properties to allow mathematical proofs of the behavior of systems while also allowing easy implementation of simulations of the system.[42]
In projective geometry, Levi graphs are a form of bipartite graph used to model the incidences between points and lines in a configuration. Corresponding to the geometric property of points and lines that every two lines meet in at most one point and every two points be connected with a single line, Levi graphs necessarily do not contain any cycles of length four, so their girth must be six or more.[43]
See also
Bipartite dimension, the minimum number of complete bipartite graphs whose union is the given graph
Bipartite double cover, a way of transforming any graph into a bipartite graph by doubling its vertices
Convex bipartite graph, a bipartite graph whose vertices can be ordered so that the vertex neighborhoods are contiguous
Multipartite graph, a generalization of bipartite graphs to more than two subsets of vertices
Parity graph, a generalization of bipartite graphs in which every two induced paths between the same two points have the same parity
Quasi-bipartite graph, a type of Steiner tree problem instance in which the terminals form an independent set, allowing approximation algorithms that generalize those for bipartite graphs
Split graph, a graph in which the vertices can be partitioned into two subsets, one of which is independent and the other of which is a clique
Zarankiewicz problem on the maximum number of edges in a bipartite graph with forbidden subgraphs
^Niedermeier, Rolf (2006), Invitation to Fixed Parameter Algorithms, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, pp. 20–21, ISBN978-0-19-856607-6
^Bracey, Robert (2012), "On the graphical interpretation of Herod's year 3 coins", in Jacobson, David M.; Kokkinos, Nikos (eds.), Judaea and Rome in Coins 65 BCE – 135 CE: Papers Presented at the International Conference hosted by Spink, 13th – 14th September 2010, Spink & Son, pp. 65–84
^Guo, Jiong; Gramm, Jens; Hüffner, Falk; Niedermeier, Rolf; Wernicke, Sebastian (2006), "Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization", Journal of Computer and System Sciences, 72 (8): 1386–1396, doi:10.1016/j.jcss.2006.02.001
^Ahuja, Ravindra K.; Magnanti, Thomas L.; Orlin, James B. (1993), "12. Assignments and Matchings", Network Flows: Theory, Algorithms, and Applications, Prentice Hall, pp. 461–509.
^Ahuja, Magnanti & Orlin (1993), p. 463: "Nonbipartite matching problems are more difficult to solve because they do not reduce to standard network flow problems."
The Arc de Triomphe of Place de l'Étoile: salah satu bangunan di Prancis yang menggunakan gaya empire Gaya Imperium adalah gaya dalam arsitektur bangunan, rumah atau perabotan rumah yang berkembang di Eropa.[1] Gaya ini merupakan fase utama seni neo-klasik yang berkembang di Prancis pada masa kekaisaran pertama (1804-1814).[2] Gaya imperium berasal dari gaya Louis XVI yang klasik dan mewah serta dipengaruhi oleh bentuk-bentuk gaya Yunani, Romawi dan Mesir.[2] Ciri-cir...
Colloquialism for Jewish New Year holiday, 10 Days of Awe, Repentance and Atonement For other uses, see High Holy Days (disambiguation). See also: Jewish holidays Ashkenazi-style shofar. The shofar is used during the High Holy Days. In Judaism, the High Holy Days, also known as High Holidays or Days of Awe (Yamim Noraim; Hebrew: יָמִים נוֹרָאִים, Yāmīm Nōrāʾīm) consist of: strictly, the holidays of Rosh Hashanah (Jewish New Year) and Yom Kippur (Day of Atonement); by exte...
2018 video game 2018 video gameAssassin's Creed OdysseyCover art featuring AlexiosDeveloper(s)Ubisoft QuebecPublisher(s)UbisoftDirector(s)Jonathan DumontScott PhillipsProducer(s)Marc-Alexis CôtéDesigner(s)Julien GalloudecJordane ThiboustArtist(s)Thierry DansereauWriter(s)Jonathan DumontMelissa MacCoubreyHugo GiardComposer(s)The FlightSeriesAssassin's CreedEngineAnvilNext 2.0Platform(s)PlayStation 4WindowsXbox OneNintendo SwitchStadiaRelease October 5, 2018 PlayStation 4, Windows, Xbox OneWW...
Union state in the American Civil War Flag of the 20th Maine Volunteer Infantry Regiment in the war. Union states in the American Civil War California Connecticut Delaware Illinois Indiana Iowa Kansas Maine Maryland Massachusetts Michigan Minnesota Nevada New Hampshire New Jersey New York Ohio Oregon Pennsylvania Rhode Island Vermont West Virginia Wisconsin Dual governments Kentucky Missouri Virginia West Virginia Territories and D.C. Arizona Colorado Dakota District of Columbia Idaho Indian ...
Eingangsschild am Tempelhofer Weg 9 Der Kirchhof Sankt Simeon und Sankt Lukas, auch Friedhof St. Simeon-St. Lukas, ist ein evangelischer Friedhof im Ortsteil Britz des Berliner Bezirks Neukölln. Namensgeber sind die Heiligen Simeon der Greis und Lukas der Evangelist. Ursprünglich diente er zur Bestattung für die Gemeinden der Sankt-Lukas-Kirche und der Sankt-Simeon-Kirche. Inhaltsverzeichnis 1 Lage 2 Geschichte 3 Gräber bekannter Persönlichkeiten 4 Verwaltung 5 Siehe auch 6 Web...
Game administrator in association football Official (football) redirects here. For officials (including referees) in gridiron football, see Official (gridiron football). See also: Official (Canadian football) Malang Diedhiou refereeing during a 2018 World Cup match In association football, the referee is the person responsible for interpreting and enforcing the Laws of the Game during a match. The referee is the final decision-making authority on all facts connected with play, and is the matc...
Meat from a turkey Not to be confused with Turkish cuisine. Turkey dinner redirects here. For the Dad's Army episode, see Turkey Dinner. This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (February 2015) (Learn how and when to remove this message) A roast turkey prepared for a traditional U.S. Thanksgiving meal. The white plastic object in the breast is...
Racquet sport played with a hollow rubber ball in an indoor or outdoor court Not to be confused with Paddleball (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Racquetball – news · newspapers · books · scholar · JSTOR (July 2009) (Learn how and when to remove this message) RacquetballRacque...
Type of nuclear reactor Aqueous homogeneous reactor at Oak Ridge National Laboratory Aqueous homogeneous reactors (AHR) is a two (2) chamber reactor consisting of an interior reactor chamber and an outside cooling and moderating jacket chamber. They are a type of nuclear reactor in which soluble nuclear salts (usually uranium sulfate or uranium nitrate) are dissolved in water. The fuel is mixed with heavy or light water which partially moderates and cools the reactor. The outside layer of the...
American media theorist and cultural critic (1931–2003) Neil PostmanBorn(1931-03-08)March 8, 1931New York City, U.S.DiedOctober 5, 2003(2003-10-05) (aged 72)New York City, U.S.OccupationWriter, professorEducationState University of New York at FredoniaColumbia UniversityPeriod1959–2003SubjectsMedia ecologyMedia criticismcultural criticismeducationSpouseShelley RossChildren3, including Marc Neil Postman (March 8, 1931 – October 5, 2003) was an American author, educator, media theori...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2015) هذه المقالة غير مكتملة، وربما تنقصها بعض المعلومات الضرورية. فضلًا ساعد في تطويرها بإضافة مزيدٍ من المعلومات. (نوفمبر 2018) منذ زمن وغزة تقاوم القوات الإسرائي...
فليكفيورد فليكفيورد خريطة الموقع تاريخ التأسيس 1842 تقسيم إداري البلد النرويج [1][2] خصائص جغرافية إحداثيات 58°19′38″N 6°40′00″E / 58.327222222222°N 6.6666666666667°E / 58.327222222222; 6.6666666666667 [3] المساحة 544.07 كيلومتر مربع (1 يناير 2020)[4] السكان التعدا...
1905 Liberian general election ← 1903 1905 1907 → Presidential election Nominee Arthur Barclay William D. Coleman Party True Whig Party People's Party President before election Arthur Barclay TWP Elected President Arthur Barclay TWP Politics of Liberia Constitution 1847 Constitution 1986 Constitution Executive President Joseph Boakai Vice President Jeremiah Koung Cabinet Legislature Senate President Pro Tempore House of Representatives Speaker Judiciary Supreme C...
Place in Central Region, UgandaNajjanankumbiNajjanankumbiMap of Kampala showing the location of NajjanankumbiCoordinates: 00°16′20″N 32°34′30″E / 0.27222°N 32.57500°E / 0.27222; 32.57500Country UgandaRegionCentral RegionDistrictKampala Capital City Authority DivisionLubaga Division Elevation1,240 m (4,070 ft)Time zoneUTC+3 (EAT) Najjanankumbi is an area in the Lubaga Division of Uganda, on the southern edge of the city of Kampala. Location Na...
Arieh Worthalter, lauréat du César du meilleur acteur en 2024 pour son rôle dans Le Procès Goldman. Le César du meilleur acteur est une récompense cinématographique française décernée par l'Académie des arts et techniques du cinéma depuis la première remise de prix le 3 avril 1976 au Palais des congrès à Paris. Introduction Nominations et victoires multiples Acteurs récompensés à plusieurs reprises : 3 César : Michel Serrault (1979, 1982 et 1996) 2 César : P...
2008 American documentary film directed by Kurt Kuenne Dear Zachary: A Letter to a Son About His FatherTheatrical release posterDirected byKurt KuenneWritten byKurt KuenneProduced byKurt KuenneCinematographyKurt KuenneEdited byKurt KuenneMusic byKurt KuenneProductioncompanyMSNBC FilmsDistributed byOscilloscope LaboratoriesRelease dates January 2008 (2008-01) (Slamdance Film Festival) October 31, 2008 (2008-10-31) Running time93 minutesCountryUnited StatesLanguageE...
Senjata untuk menangkap tersangka kriminal: disebelah kiri Tsukubo, di tengah Sodegarami dan di sebelah kanan Sasumata Sasumata (刺股code: ja is deprecated ) adalah senjata tongkat yang digunakan oleh kelas Samurai dari feodal Jepang. Deskripsi dan Penggunaan Meskipun beberapa sumber menempatkan asal sasumata pada Zaman Muromachi, sebagian besar sumber membahas penggunaannya berasal dari Zaman Edo. Di Zaman Edo para samurai bertanggung jawab atas operasi kepolisian, berbagai tingkat polisi...
Women's road raceat the Games of the XXV OlympiadVenueSant Sadurní d'Anoia, BarcelonaDate26 JulyCompetitors57 from 26 nationsWinning time2:04:42Medalists Kathryn Watt Australia Jeannie Longo-Ciprelli France Monique Knol Netherlands← 19881996 → Cycling at the1992 Summer OlympicsRoad cyclingRoad racemenwomenTeam time trialmenTrack cyclingTrack time trialmenIndividual pursuitmenwomenTeam pursuitmenSprintmenwomenPoints racemenvte These are the offi...
2nd episode of the 1st season of Hell on Wheels Immoral MathematicsHell on Wheels episodeThe Swede (Christopher Heyerdahl) checks in on a prisoner.Episode no.Season 1Episode 2Directed byDavid Von AnckenWritten byTony GaytonJoe GaytonProduction code102Original air dateNovember 13, 2011 (2011-11-13)Guest appearances Christopher Heyerdahl as The Swede Ian Tracey as Bolan Diego Diablo del Mar as Dix Dave Trimble as Durant's Man #1 Tefari Thompson as Freedman Bruce Ramsay as Jo...