Transversal (combinatorics)

In mathematics, particularly in combinatorics, given a family of sets, here called a collection C, a transversal (also called a cross-section[1][2][3]) is a set containing exactly one element from each member of the collection. When the sets of the collection are mutually disjoint, each element of the transversal corresponds to exactly one member of C (the set it is a member of). If the original sets are not disjoint, there are two possibilities for the definition of a transversal:

  • One variation is that there is a bijection f from the transversal to C such that x is an element of f(x) for each x in the transversal. In this case, the transversal is also called a system of distinct representatives (SDR).[4]: 29 
  • The other, less commonly used, does not require a one-to-one relation between the elements of the transversal and the sets of C. In this situation, the members of the system of representatives are not necessarily distinct.[5]: 692 [6]: 322 

In computer science, computing transversals is useful in several application domains, with the input family of sets often being described as a hypergraph.

In set theory, the axiom of choice is equivalent to the statement that every partition has a transversal.[7]

Existence and number

A fundamental question in the study of SDR is whether or not an SDR exists. Hall's marriage theorem gives necessary and sufficient conditions for a finite collection of sets, some possibly overlapping, to have a transversal. The condition is that, for every integer k, every collection of k sets must contain in common at least k different elements.[4]: 29 

The following refinement by H. J. Ryser gives lower bounds on the number of such SDRs.[8]: 48 

Theorem. Let S1, S2, ..., Sm be a collection of sets such that contains at least k elements for k = 1,2,...,m and for all k-combinations {} of the integers 1,2,...,m and suppose that each of these sets contains at least t elements. If tm then the collection has at least t ! SDRs, and if t > m then the collection has at least t ! / (t - m)! SDRs.

Relation to matching and covering

One can construct a bipartite graph in which the vertices on one side are the sets, the vertices on the other side are the elements, and the edges connect a set to the elements it contains. Then, a transversal (defined as a system of distinct representatives) is equivalent to a perfect matching in this graph.

One can construct a hypergraph in which the vertices are the elements, and the hyperedges are the sets. Then, a transversal (defined as a system of not-necessarily-distinct representatives) is a vertex cover in a hypergraph.

Examples

In group theory, given a subgroup H of a group G, a right (respectively left) transversal is a set containing exactly one element from each right (respectively left) coset of H. In this case, the "sets" (cosets) are mutually disjoint, i.e. the cosets form a partition of the group.

As a particular case of the previous example, given a direct product of groups , then H is a transversal for the cosets of K.

In general, since any equivalence relation on an arbitrary set gives rise to a partition, picking any representative from each equivalence class results in a transversal.

Another instance of a partition-based transversal occurs when one considers the equivalence relation known as the (set-theoretic) kernel of a function, defined for a function with domain X as the partition of the domain . which partitions the domain of f into equivalence classes such that all elements in a class map via f to the same value. If f is injective, there is only one transversal of . For a not-necessarily-injective f, fixing a transversal T of induces a one-to-one correspondence between T and the image of f, henceforth denoted by . Consequently, a function is well defined by the property that for all z in where x is the unique element in T such that ; furthermore, g can be extended (not necessarily in a unique manner) so that it is defined on the whole codomain of f by picking arbitrary values for g(z) when z is outside the image of f. It is a simple calculation to verify that g thus defined has the property that , which is the proof (when the domain and codomain of f are the same set) that the full transformation semigroup is a regular semigroup. acts as a (not necessarily unique) quasi-inverse for f; within semigroup theory this is simply called an inverse. Note however that for an arbitrary g with the aforementioned property the "dual" equation may not hold. However if we denote by , then f is a quasi-inverse of h, i.e. .

Common transversals

A common transversal of the collections A and B (where ) is a set that is a transversal of both A and B. The collections A and B have a common transversal if and only if, for all ,

[9]

Generalizations

A partial transversal is a set containing at most one element from each member of the collection, or (in the stricter form of the concept) a set with an injection from the set to C. The transversals of a finite collection C of finite sets form the basis sets of a matroid, the transversal matroid of C. The independent sets of the transversal matroid are the partial transversals of C.[10]

An independent transversal (also called a rainbow-independent set or independent system of representatives) is a transversal which is also an independent set of a given graph. To explain the difference in figurative terms, consider a faculty with m departments, where the faculty dean wants to construct a committee of m members, one member per department. Such a committee is a transversal. But now, suppose that some faculty members dislike each other and do not agree to sit in the committee together. In this case, the committee must be an independent transversal, where the underlying graph describes the "dislike" relations.[11]

Another generalization of the concept of a transversal would be a set that just has a non-empty intersection with each member of C. An example of the latter would be a Bernstein set, which is defined as a set that has a non-empty intersection with each set of C, but contains no set of C, where C is the collection of all perfect sets of a topological Polish space. As another example, let C consist of all the lines of a projective plane, then a blocking set in this plane is a set of points which intersects each line but contains no line.

Category theory

In the language of category theory, a transversal of a collection of mutually disjoint sets is a section of the quotient map induced by the collection.

Computational complexity

The computational complexity of computing all transversals of an input family of sets has been studied, in particular in the framework of enumeration algorithms.

See also

References

  1. ^ John Mackintosh Howie (1995). Fundamentals of Semigroup Theory. Clarendon Press. p. 63. ISBN 978-0-19-851194-6.
  2. ^ Clive Reis (2011). Abstract Algebra: An Introduction to Groups, Rings and Fields. World Scientific. p. 57. ISBN 978-981-4335-64-5.
  3. ^ Bruno Courcelle; Joost Engelfriet (2012). Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach. Cambridge University Press. p. 95. ISBN 978-1-139-64400-6.
  4. ^ a b Lovász, László; Plummer, M. D. (1986), Matching Theory, Annals of Discrete Mathematics, vol. 29, North-Holland, ISBN 0-444-87916-1, MR 0859549
  5. ^ Roberts, Fred S.; Tesman, Barry (2009), Applied Combinatorics (2nd ed.), Boca Raton: CRC Press, ISBN 978-1-4200-9982-9
  6. ^ Brualdi, Richard A. (2010), Introductory Combinatorics (5th ed.), Upper Saddle River, NJ: Prentice Hall, ISBN 978-0-13-602040-0
  7. ^ John, Bell (December 10, 2021). "The Axiom of Choice". Stanford Encyclopedia of Philosophy. Retrieved December 2, 2024. Let us call Zermelo's 1908 formulation the combinatorial axiom of choice: CAC: Any collection of mutually disjoint nonempty sets has a transversal.
  8. ^ Ryser, Herbert John (1963), Combinatorial Mathematics, The Carus Mathematical Monographs #14, Mathematical Association of America
  9. ^ E. C. Milner (1974), TRANSVERSAL THEORY, Proceedings of the international congress of mathematicians, p. 161
  10. ^ Oxley, James G. (2006), Matroid Theory, Oxford graduate texts in mathematics, vol. 3, Oxford University Press, p. 48, ISBN 978-0-19-920250-8.
  11. ^ Haxell, P. (2011-11-01). "On Forming Committees". The American Mathematical Monthly. 118 (9): 777–788. doi:10.4169/amer.math.monthly.118.09.777. ISSN 0002-9890. S2CID 27202372.

Further reading

Read other articles:

Questa voce o sezione sull'argomento conflitti non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Le guerre franco-indiane sono il nome usato negli Stati Uniti per indicare una serie di conflitti nel Nord America, che rappresentano sull'altra sponda dell'oceano Atlantico le azioni che hanno accompagnato le g...

 

Jonathan de Guzmán De Guzmán dengan Feyenoord pada 2007Informasi pribadiNama lengkap Jonathan Alexander de Guzmán[1]Tanggal lahir 13 September 1987 (umur 36)Tempat lahir Scarborough, Ontario, KanadaTinggi 1,74 m (5 ft 9 in)Posisi bermain GelandangInformasi klubKlub saat ini NapoliNomor 6Karier junior1999–2005 FeyenoordKarier senior*Tahun Tim Tampil (Gol)2005–2010 Feyenoord 109 (23)2010–2011 Mallorca 34 (6)2011–2014 Villarreal 20 (0)2012–2014 → Swansea Ci...

 

Montana affiliate of the Republican Party Montana Republican Party ChairmanDon KaltschmidtSenate Majority LeaderSteve FitzpatrickHouse Majority LeaderSue VintonHeadquartersHelena, MontanaIdeologyConservatismPolitical positionRight-wingNational affiliationRepublican PartyColors  RedSeats in the U.S. Senate1 / 2 Seats in the U.S. House2 / 2 Seats in the Montana Senate34 / 50 Seats in the Montana House68 / 100 Statewide Executive Offices6 / 6 WebsiteMTGOP.orgPolitics of MontanaElection...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus sege...

 

TegucigalpaIbu kotaTegucigalpa, Municipio del Distrito Central BenderaJulukan: Tegus,[1] Tepaz,[2] Cerro de Plata (Gunung Perak)Lokasi Distrik Pusat pada Departemen Francisco MorazánNegaraHondurasDepartemenFrancisco MorazánMunisipalitasDistrik PusatDidirikan29 September 1578; 445 tahun lalu (1578-09-29)Resmi menjadi ibu kota30 Oktober 1880; 143 tahun lalu (1880-10-30)Digabung sebagai Distrik Pusat30 Januari 1937; 87 tahun lalu (1937-01-30)Pemerintahan...

 

Gempa bumi Taiwan 20242024年4月花莲地震Bangunan sembilan lantai roboh di Kota HualienWaktu UTC2024-04-02 23:58:11ISC637103828USGS-ANSSComCatTanggal setempat3 April 2024Waktu setempat07:58:11 NSTKekuatan7.4 MwKedalaman34,8 km (22 mi)Episentrum23°49′08″N 121°33′43″E / 23.819°N 121.562°E / 23.819; 121.562dekat Kota Hualien, Hualien, TaiwanJenisSesar NaikWilayah bencanaTaiwanIntensitas maks.VIII (Parah)CWB 6+ TsunamiYa (45 cm di I...

This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (August 2019) (Learn how and when to remove this template message) States of Jersey Customs and Immigration ServiceAgency overviewFormed1 January, 2005Preceding agenciesCustoms and ExciseImmigration and NationalityJurisd...

 

Bangladeshi freedom fighter and military leader Major GeneralKhaled MosharrafBir Uttamখালেদ মোশাররফMajor General Mosharraf in Colonel insignia (c. 1972)3rd Chief of Army StaffIn office3 November 1975 – 7 November 1975PresidentKhondaker Mostaq AhmadAbu Sadat Mohammad SayemPrime MinisterNonePreceded byZiaur RahmanSucceeded byZiaur Rahman Personal detailsBorn9 November 1937Jamalpur, Bengal, British India (now Mymensingh, Bangladesh)Died7 November 1975(1975-11-0...

 

2001 single by Nicole Kidman and Ewan McGregorCome What MaySingle by Nicole Kidman and Ewan McGregorfrom the album Moulin Rouge! Released24 September 2001RecordedMarch 2001GenrePop, musicalLength4:48LabelInterscopeSongwriter(s)David Baerwald, Kevin GilbertProducer(s)BLAM, Marius de Vries, Josh G AbrahamsNicole Kidman singles chronology Come What May (2001) Somethin' Stupid (2001) Music videoCome What May on YouTube Come What May is a song composed by David Baerwald and Kevin Gilbert,[...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Care Bears: Adventures in Care-a-lot – news · newspapers · books · scholar · JSTOR (October 2011) (Learn how and when to remove this message) American TV series or program Care Bears: Adventures in Care-a-lotGenreAnimated seriesBased onCare Bears: Oopsy Does It...

 

Not to be confused with 2022 United States House of Representatives elections in Massachusetts. 2022 Massachusetts House of Representatives election ← 2020 November 8, 2022 2024 → All 160 seats in the Massachusetts House of Representatives81 seats needed for a majorityRegistered4,884,076 [1] ( 1.48 pp)Turnout51.42% ( 24.58 pp)   Majority party Minority party   Leader Ron Mariano Bradley Jones Jr. Party Democratic Republican Leader since December 3...

 

تحوي هذه المقالة أو هذا القسم ترجمة آلية. فضلًا، ساهم في تدقيقها وتحسينها أو إزالتها لأنها تخالف سياسات ويكيبيديا. (نقاش) (يوليو 2016) جزء من سلسلة مقالات حولالحرية مفاهيم حرية حرية سلبية حرية إيجابية حقوق حرية الإرادة حسب المجال مدنية اقتصادية فكرية سياسية حسب الحق التجمع ال...

American television sitcom (1970–1977) The Mary Tyler Moore ShowGenreSitcomCreated byJames L. BrooksAllan BurnsStarringMary Tyler MooreEd AsnerGavin MacLeodTed KnightCloris LeachmanValerie HarperGeorgia Engel Betty WhiteTheme music composerSonny CurtisOpening themeLove Is All Around, written and performed by Sonny CurtisComposerPatrick WilliamsCountry of originUnited StatesOriginal languageEnglishNo. of seasons7No. of episodes168 (list of episodes)ProductionExecutive producersJames L. Brook...

 

Cet article est une ébauche concernant Berlin. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Arrondissement de Friedrichshain-Kreuzberg Héraldique Localisation Administration Pays Allemagne Land Berlin Maire d'arrondissement(Bezirksbürgermeister) Monika Herrmann Partis au pouvoir Les Verts Démographie Population 289 014 hab. (31/12/2021) Densité 14 336 hab./km2 Géographie Superficie 2...

 

Television series from Netflix Lost OllieNetflix posterGenre Adventure Fantasy Drama Created byShannon TindleBased onOllie's Odysseyby William JoyceDirected byPeter RamseyStarring Jake Johnson Gina Rodriguez Voices of Jonathan Groff Tim Blake Nelson Mary J. Blige Narrated byJonathan GroffComposers Scot Stafford Stephen Spies Country of originUnited StatesOriginal languageEnglishNo. of episodes4ProductionExecutive producers Shannon Tindle Peter Ramsey Shawn Levy Josh Barry Emily Morris Brandon...

Serbian statesman and military leader (1840–1913) GeneralSava GrujićGeneral Sava GrujićPrime Minister of the Kingdom of SerbiaIn office1 January 1888 – 27 April 1888MonarchAlexander IPreceded byJovan RistićSucceeded byNikola HristićIn office7 March 1889 – 23 February 1891MonarchAlexander IPreceded byKosta ProtićSucceeded byNikola PašićIn office5 December 1893 – 24 January 1894MonarchAlexander IPreceded byLazar DokićSucceeded byĐorđe SimićIn office...

 

Ukrainian javelin thrower (born 1988) Roman AvramenkoRoman Avramenko in 2013Personal informationBorn (1988-03-23) 23 March 1988 (age 36)Height1.85 m (6 ft 1 in)Weight95 kg (209 lb)SportCountry UkraineSportAthleticsEventJavelin Medal record Men's athletics Representing  Ukraine Universiade 2011 Shenzhen Javelin throw World Junior Championships 2006 Beijing Javelin throw European Junior Championships 2007 Hengelo Javelin throw World Youth Championships 20...

 

Main article: 1788–89 United States presidential election 1788–89 United States presidential election in South Carolina January 7, 1789 1792 →   Nominee George Washington John Rutledge John Hancock Party Independent Federalist Federalist Home state Virginia South Carolina Massachusetts Electoral vote 7 6 1 Percentage 100.00% – – President before election George Washington Independent Elected President George Washington Independent Elections in South Carolina...

Diocèse de Vence(la) Dioecesis Venciensis La cathédrale de la Nativité-de-Marie de Vence Informations générales Pays France Église catholique Rite liturgique romain Type de juridiction diocèse suffragant Création Ve siècle Suppression 1790 / 1801 Province ecclésiastique Embrun Siège Vence Langue(s) liturgique(s) latin Calendrier julien puis grégorien Localisation du diocèse (en) Notice sur www.catholic-hierarchy.org modifier  Le diocèse de Vence (en latin : Dioec...

 

Prehistoric and historic currency using sea shells Part of a series onEconomic, applied, and development anthropology Basic concepts Commodification Barter Debt Finance Embeddedness Reciprocity Redistribution Value Wealth Gift economy Limited good Inalienable possessions Singularization (commodity pathway) Spheres of exchange Social capital Cultural capital Provisioning systems Hunting-gathering Pastoralism Nomadic pastoralism Shifting cultivation Moral economy Peasant economics Case studies ...