Kernel (set theory)

In set theory, the kernel of a function (or equivalence kernel[1]) may be taken to be either

  • the equivalence relation on the function's domain that roughly expresses the idea of "equivalent as far as the function can tell",[2] or
  • the corresponding partition of the domain.

An unrelated notion is that of the kernel of a non-empty family of sets which by definition is the intersection of all its elements: This definition is used in the theory of filters to classify them as being free or principal.

Definition

Kernel of a function

For the formal definition, let be a function between two sets. Elements are equivalent if and are equal, that is, are the same element of The kernel of is the equivalence relation thus defined.[2]

Kernel of a family of sets

The kernel of a family of sets is[3] The kernel of is also sometimes denoted by The kernel of the empty set, is typically left undefined. A family is called fixed and is said to have non-empty intersection if its kernel is not empty.[3] A family is said to be free if it is not fixed; that is, if its kernel is the empty set.[3]

Quotients

Like any equivalence relation, the kernel can be modded out to form a quotient set, and the quotient set is the partition:

This quotient set is called the coimage of the function and denoted (or a variation). The coimage is naturally isomorphic (in the set-theoretic sense of a bijection) to the image, specifically, the equivalence class of in (which is an element of ) corresponds to in (which is an element of ).

As a subset of the Cartesian product

Like any binary relation, the kernel of a function may be thought of as a subset of the Cartesian product In this guise, the kernel may be denoted (or a variation) and may be defined symbolically as[2]

The study of the properties of this subset can shed light on

Algebraic structures

If and are algebraic structures of some fixed type (such as groups, rings, or vector spaces), and if the function is a homomorphism, then is a congruence relation (that is an equivalence relation that is compatible with the algebraic structure), and the coimage of is a quotient of [2] The bijection between the coimage and the image of is an isomorphism in the algebraic sense; this is the most general form of the first isomorphism theorem.

In topology

If is a continuous function between two topological spaces then the topological properties of can shed light on the spaces and For example, if is a Hausdorff space then must be a closed set. Conversely, if is a Hausdorff space and is a closed set, then the coimage of if given the quotient space topology, must also be a Hausdorff space.

A space is compact if and only if the kernel of every family of closed subsets having the finite intersection property (FIP) is non-empty;[4][5] said differently, a space is compact if and only if every family of closed subsets with F.I.P. is fixed.

See also

References

  1. ^ Mac Lane, Saunders; Birkhoff, Garrett (1999), Algebra, Chelsea Publishing Company, p. 33, ISBN 0821816462.
  2. ^ a b c d Bergman, Clifford (2011), Universal Algebra: Fundamentals and Selected Topics, Pure and Applied Mathematics, vol. 301, CRC Press, pp. 14–16, ISBN 9781439851296.
  3. ^ a b c Dolecki & Mynard 2016, pp. 27–29, 33–35.
  4. ^ Munkres, James (2004). Topology. New Delhi: Prentice-Hall of India. p. 169. ISBN 978-81-203-2046-8.
  5. ^ A space is compact iff any family of closed sets having fip has non-empty intersection at PlanetMath.

Bibliography

Read other articles:

artikel ini tidak memiliki pranala ke artikel lain. Tidak ada alasan yang diberikan. Bantu kami untuk mengembangkannya dengan memberikan pranala ke artikel lain secukupnya. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Lava karbonat di Ol Doinyo Lengai yang telah membeku Fenomena Lava Karbonat adalah ketika gunung mengeluarkan lava yang memiliki kandungan kalsium dan magnesium karbonat dengan kandungan silikat dan besi yang rendah. Fenomena ini disebut carbonatite. Lava ...

 

Gereja Katolik di UkrainaKatedral Santo George, LvivJenisKebijakan NasionalPenggolonganGereja Katolik RomaOrientasiTimur dan LatinBentukpemerintahanKebijakan episkopalPausPaus FransiskusUskup Agung Mayor(UGCC)Sviatoslav ShevchukUskup(Latin)Mieczysław MokrzyckiUskup(RGCC)Nil Lushchak (Administrator Apostolik)Wilayah UkrainaBahasaBahasa Slavonia Gerejawi, Ukraina, LatinKatedral Santo Nikolas di Kyiv. Gereja Katolik Roma di Ukraina adalah bagian dari Gereja Katolik Roma yang berada di bawa...

 

Android MarshmallowVersi dari sistem operasi AndroidPembangunGooglePratinjau terkiniPratayang Pengembang 3 MPA44I / 19 Agustus 2015; 8 tahun lalu (2015-08-19)Didahului olehAndroid 5.0 s/d 5.1 LollipopDigantikan olehAndroid 7.0 s/d 7.1 NougatSitus resmiwww.android.comStatus dukunganDukungan Utama berakhir tanggal 14 Januari 2020 dan dukungan tambahan berakhir tanggal 9 Januari 2029 Android 6.0 dan 6.0.1 Marshmallowadalah versi utama keenam dari sistem operasi Android dan versi ke 13 ...

IQA World Cup VI2013Tournament informationSportQuidditchLocationKissimmee, FLDates13–14 April 2013AdministratorInternational Quidditch AssociationTournamentformat(s)Pool play Single elimination bracketVenue(s)Austin-Tindall Regional ParkTeams77 (60 in D1, 17 in D2)Final positionsChampionUniversity of TexasRunner-upUCLA← IQA World Cup VIQA World Cup VII → The IQA World Cup VI was the 2013 edition of the IQA World Cup (now the US Quidditch Cup), a quidditch club tourname...

 

African-American civil rights activist Martha E. ForresterBorn1863 (1863)Died1951 (aged 87–88)NationalityAmericanOccupation(s)Clubwoman, activist, educator Martha E. Forrester (1863–1951) was an African-American civil rights activist. Forrester was born in Richmond, Virginia, and married Robert Forrester early in life;[1] she worked as a public school teacher in Richmond for some years.[2] After her husband's death she moved to Farmville, where her daughter J...

 

A piece of equipment that distributes electric power This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Electric switchboard – news · newspapers · books · scholar · JSTOR (May 2022) (Learn how and when to remove this template message) A low-voltage switchboard A modern electric switchboard An electric switchboa...

Alphabet used in Myanmar and Thailand Kayah Liꤊꤢꤛꤢ꤭ ꤜꤟꤤ꤬Script type Alphabet Time period1962–presentDirectionLeft-to-right LanguagesKayah languagesISO 15924ISO 15924Kali (357), ​Kayah LiUnicodeUnicode aliasKayah LiUnicode rangeU+A900–U+A92F This article contains phonetic transcriptions in the International Phonetic Alphabet (IPA). For an introductory guide on IPA symbols, see Help:IPA. For the distinction between [ ], / / a...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Virasana Virasana (Sanskerta: वीरासन  ; IAST : vīrāsana) atau Pose Pahlawan[1] adalah sikap duduk berlutut dalam yoga modern sebagai latihan. Teks hatha yoga abad pertengahan menggambarkan sikap duduk meditasi bersi...

 

Fictional comic book character This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Piledriver character – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this message) Comics character PiledriverPublication informationPublisherMarvel ComicsFirst appearanceThe Defenders #17(November 1974)Created byLen WeinSal Busce...

Transport for LondonDaerah pertanggungjawaban di InggrisSingkatanTfLTanggal pendirian3 Juli 2000 (Greater London Authority Act 1999)StatusExecutive agency within GLATipePerusahaan mandatTujuanOtoritas transportasiKantor pusatWindsor House, Victoria Street, Westminster, LondonWilayah layanan London RayaChairmanWali kota LondonBoris JohnsonBadan utamaLondon UndergroundLondon BusesLondon RailLondon StreetsLondon OvergroundOrganisasi indukOtoritas London Raya (GLA)Jumlah Staf 28,000Situs webtfl.g...

 

A number of notable software packages were developed for, or are maintained by, the Free Software Foundation as part of the GNU Project. What it means to be a GNU package Summarising the situation in 2013, Richard Stallman identified nine aspects which generally apply to being a GNU package,[1] but he noted that exceptions and flexibility are possible when there are good reasons:[2] The package should say that it is a GNU package. It should be distributed via ftp.gnu.org, or ...

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

Josh e Benny Safdie al Sundance Film Festival 2010. Joshua Safdie, detto Josh (New York, 3 aprile 1984), e Benjamin Safdie, detto Benny (New York, 24 febbraio 1986), sono due fratelli registi e sceneggiatori statunitensi. Benny è anche attore e montatore. Attivi nel cinema indipendente statunitense, sono noti principalmente per i film Good Time (2017) e Diamanti grezzi (2019). Indice 1 Biografia 2 Filmografia 2.1 Registi 2.1.1 Lungometraggi 2.1.2 Cortometraggi 2.1.3 Video musicali 2.2 S...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Principle of nonvacuous contrast – news · newspapers · books · scholar · JSTOR (December 2023) The Principle of Nonvacuous Contrast is a conceptual framework and methodological principle that holds significance within various fields such as philosophy...

 

HeadlongAlbum studio karya Kemala AyuDirilisJuni 2011GenrefolkLabelDemajorsKronologi Kemala Ayu Emotions(2007)Emotions2007 Headlong(2011) Lima +(2013)Lima +2013 Headlong adalah sebuah album musik kedua karya penyanyi jazz berkebangsaan Indonesia, Kemala Ayu, yang dirilis tahun 2011. Di album ini ia dibantu Christopher Springer dalam penulisan lirik dan Yan Machmud dalam aransemen musik. Meski Kemala dikenal sebagai penyanyi jazz, namun di album ini ia mengusung musik folk.[1] Daft...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Off White LiesPoster filmSutradaraMaya KenigProduserYoav Roeh, Orit ZamirDitulis olehMaya Kenig, Dana DimantPemeranGur BentvichElya InbarTzahi GradPenata musikUdi BernerSinematograferItay VinogradPenyuntingOr Ben DavidTanggal rilisDurasi86 menit...

 

Professional snooker tournament World Snooker ChampionshipTournament informationDates17 March – 23 May 1930 (1930-03-17 – 1930-05-23)Final venueThurston's HallFinal cityLondonCountryEnglandOrganisationBACCHighest break Joe Davis (ENG) (79)FinalChampion Joe Davis (ENG)Runner-up Tom Dennis (ENG)Score25–12← 1929 1931 → Snooker tournament The 1930 World Snooker Championship, known at the time as the Professional Champio...

 

British Conservative politician The subject of this article is standing for re-election to the House of Commons of the United Kingdom on 4 July, and has not been an incumbent MP since Parliament was dissolved on 30 May. Some parts of this article may be out of date during this period. Please feel free to improve this article (but note that updates without valid and reliable references will be removed) or discuss changes on the talk page. Ben EverittOfficial portrait, 2019Member of P...

River in Powys, Wales The MuleNative nameAfon Miwl (Welsh)LocationCountryWalesRegionPowysPhysical characteristicsMouth  • locationRiver Severn, Abermule The Mule (Welsh: Afon Miwl) is a short river in Powys, mid Wales, and a tributary of the River Severn. It rises at Black Gate near the west end of Kerry Hill[1] and is joined by a number of streams, principal amongst which is the Nant Meheli, east of Kerry. Initially flowing northeast it turns to flow ea...

 

Voce principale: UEFA Champions League 2000-2001. Finale della UEFA Champions League 2000-2001Il portiere bavarese Oliver Kahn, protagonista della finale di Milano, solleva il trofeoInformazioni generaliSport Calcio CompetizioneChampions League 2000-01 Data23 maggio 2001 CittàMilano ImpiantoStadio Giuseppe Meazza Spettatori79 000[1] Dettagli dell'incontro  Bayern Monaco  Valencia 1 1 5 - 4 dopo i tiri di rigore Arbitro Dick Jol Successione ← Finale della UE...