Polish space

In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory.

Common examples of Polish spaces are the real line, any separable Banach space, the Cantor space, and the Baire space. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; e.g., the open interval (0, 1) is Polish.

Between any two uncountable Polish spaces, there is a Borel isomorphism; that is, a bijection that preserves the Borel structure. In particular, every uncountable Polish space has the cardinality of the continuum.

Lusin spaces, Suslin spaces, and Radon spaces are generalizations of Polish spaces.

Properties

  1. Every Polish space is second countable (by virtue of being separable and metrizable).[1]
  2. A subspace Q of a Polish space P is Polish (under the induced topology) if and only if Q is the intersection of a sequence of open subsets of P (i. e., Q is a Gδ-set).[2]
  3. (Cantor–Bendixson theorem) If X is Polish then any closed subset of X can be written as the disjoint union of a perfect set and a countable set. Further, if the Polish space X is uncountable, it can be written as the disjoint union of a perfect set and a countable open set.
  4. Every Polish space is homeomorphic to a Gδ-subset of the Hilbert cube (that is, of IN, where I is the unit interval and N is the set of natural numbers).[3]

The following spaces are Polish:

  • closed subsets of a Polish space,
  • open subsets of a Polish space,
  • products and disjoint unions of countable families of Polish spaces,
  • locally compact spaces that are metrizable and countable at infinity,
  • countable intersections of Polish subspaces of a Hausdorff topological space,
  • the set of irrational numbers with the topology induced by the standard topology of the real line.

Characterization

There are numerous characterizations that tell when a second-countable topological space is metrizable, such as Urysohn's metrization theorem. The problem of determining whether a metrizable space is completely metrizable is more difficult. Topological spaces such as the open unit interval (0,1) can be given both complete metrics and incomplete metrics generating their topology.

There is a characterization of complete separable metric spaces in terms of a game known as the strong Choquet game. A separable metric space is completely metrizable if and only if the second player has a winning strategy in this game.

A second characterization follows from Alexandrov's theorem. It states that a separable metric space is completely metrizable if and only if it is a subset of its completion in the original metric.

Polish metric spaces

Although Polish spaces are metrizable, they are not in and of themselves metric spaces; each Polish space admits many complete metrics giving rise to the same topology, but no one of these is singled out or distinguished. A Polish space with a distinguished complete metric is called a Polish metric space. An alternative approach, equivalent to the one given here, is first to define "Polish metric space" to mean "complete separable metric space", and then to define a "Polish space" as the topological space obtained from a Polish metric space by forgetting the metric.

Generalizations of Polish spaces

Lusin spaces

A Hausdorff topological space is a Lusin space (named after Nikolai Lusin) if some stronger topology makes it into a Polish space.

There are many ways to form Lusin spaces. In particular:

  • Every Polish space is a Lusin space[4]
  • A subspace of a Lusin space is a Lusin space if and only if it is a Borel set.[5]
  • Any countable union or intersection of Lusin subspaces of a Hausdorff space is a Lusin space.[6]
  • The product of a countable number of Lusin spaces is a Lusin space.[7]
  • The disjoint union of a countable number of Lusin spaces is a Lusin space.[8]

Suslin spaces

A Hausdorff topological space is a Suslin space (named after Mikhail Suslin) if it is the image of a Polish space under a continuous mapping. So every Lusin space is Suslin. In a Polish space, a subset is a Suslin space if and only if it is a Suslin set (an image of the Suslin operation).[9]

The following are Suslin spaces:

  • closed or open subsets of a Suslin space,
  • countable products and disjoint unions of Suslin spaces,
  • countable intersections or countable unions of Suslin subspaces of a Hausdorff topological space,
  • continuous images of Suslin spaces,
  • Borel subsets of a Suslin space.

They have the following properties:

  • Every Suslin space is separable.

Radon spaces

A Radon space, named after Johann Radon, is a topological space on which every Borel probability measure on M is inner regular. Since a probability measure is globally finite, and hence a locally finite measure, every probability measure on a Radon space is also a Radon measure. In particular a separable complete metric space (M, d) is a Radon space.

Every Suslin space is a Radon space.

Polish groups

A Polish group is a topological group G that is also a Polish space, in other words homeomorphic to a separable complete metric space. There are several classic results of Banach, Freudenthal and Kuratowski on homomorphisms between Polish groups.[10] Firstly, Banach's argument[11] applies mutatis mutandis to non-Abelian Polish groups: if G and H are separable metric spaces with G Polish, then any Borel homomorphism from G to H is continuous.[12] Secondly, there is a version of the open mapping theorem or the closed graph theorem due to Kuratowski:[13] a continuous injective homomorphism of a Polish subgroup G onto another Polish group H is an open mapping. As a result, it is a remarkable fact about Polish groups that Baire-measurable mappings (i.e., for which the preimage of any open set has the property of Baire) that are homomorphisms between them are automatically continuous.[14] The group of homeomorphisms of the Hilbert cube [0,1]N is a universal Polish group, in the sense that every Polish group is isomorphic to a closed subgroup of it.

Examples:

  • All finite dimensional Lie groups with a countable number of components are Polish groups.
  • The unitary group of a separable Hilbert space (with the strong operator topology) is a Polish group.
  • The group of homeomorphisms of a compact metric space is a Polish group.
  • The product of a countable number of Polish groups is a Polish group.
  • The group of isometries of a separable complete metric space is a Polish group

See also

References

  1. ^ Gemignani, Michael C. (1967). Elementary Topology. Internet Archive. USA: Addison-Wesley. pp. 142–143.
  2. ^ Bourbaki 1989, p. 197
  3. ^ Srivastava 1998, p. 55
  4. ^ Schwartz 1973, p. 94
  5. ^ Schwartz 1973, p. 102, Corollary 1 to Theorem 5.
  6. ^ Schwartz 1973, pp. 94, 102, Lemma 4 and Corollary 1 of Theorem 5.
  7. ^ Schwartz 1973, pp. 95, Lemma 6.
  8. ^ Schwartz 1973, p. 95, Corollary of Lemma 5.
  9. ^ Bourbaki 1989, pp. 197–199
  10. ^ Moore 1976, p. 8, Proposition 5
  11. ^ Banach 1932, p. 23.
  12. ^ Freudenthal 1936, p. 54
  13. ^ Kuratowski 1966, p. 400.
  14. ^ Pettis 1950.

Further reading

Read other articles:

Wilayah Hulu Sungai warna biru tua yang sekarang terdiri dari enam kabupaten yang disebut Banua Enam. Afdeeling Hoeloe Soengai (1930)[1] /Hoeloe Soengei Ken Riken (1942)[2]/Kabupaten Hulu Sungai (1950) adalah bekas afdeling pada masa pemerintahan Hindia Belanda/Jepang dengan wilayah di sepanjang daerah aliran sungai (DAS) Negara (sungai Bahan) di provinsi Kalimantan Selatan.[3][4] Pada Bulan April 1950 DR Murdjani diangkat sebagai Gubernur Kalimantan. Kemuadian...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Hungry Ghosts: Mao's Secret Famine PengarangJasper BeckerNegaraBritania RayaBahasaInggrisGenreSejarahPenerbitHolt Paperbacks pada 15 April 1998Tanggal terbit15 April 1998Jenis mediaCetak (Sampul keras)ISBNISBN 0805056688 Hungry Ghosts: Mao's ...

 

Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan untuk penjelasan ilmiah; bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Wikipedia tidak memberikan konsultasi medis. Jika Anda perlu bantuan atau hendak berobat, berkonsultasilah dengan tenaga kesehatan profesional. Distemper anjingInformasi umumNama lainHard pad disease, food pad diseaseSpesialisasiKedokteran hewanPenyebabCanine morbillivirus (dulu diseb...

TV station in Houston For the station on channel 10 with a similar call sign, see KUVM-LD. KUVM-CDHouston, TexasUnited StatesChannelsDigital: 20 (UHF)Virtual: 34BrandingKUVM-CD 34 Missouri City, TXProgrammingSubchannels(see below)Affiliations(see below)OwnershipOwnerHC2 Holdings(HC2 LPTV Holdings, Inc.)Sister stationsKEHO-LD, KUGB-CD, KUVM-LD, KBMN-LDHistoryFoundedAugust 6, 1980First air dateNovember 30, 1981; 42 years ago (1981-11-30)Former call signsK55CP (1981–1989)K53C...

 

Italian footballer and manager Lido Vieri Vieri c. 1970Personal informationFull name Lido VieriDate of birth (1939-07-16) 16 July 1939 (age 84)Place of birth Piombino, ItalyHeight 1.83 m (6 ft 0 in)Position(s) GoalkeeperYouth career1954–1957 TorinoSenior career*Years Team Apps (Gls)1957–1969 Torino 275 (0)1957–1958 → Vigevano (loan) 31 (0)1969–1976 Inter Milan 140 (0)1976–1980 Pistoiese 63 (0)Total 499 (0)International career1963–1968 Italy 4 (0)Managerial ca...

 

Defensive strategy in basketball Basketball playbook2–3 zone initial alignment2–3 zone DefenseType:Half court zone defenseName UsageTechnical name:2–3 zone DefenseCommon name:2–3 zoneOther common names:2–1–2 zonePlay Development CreditDesigned 1st by:Coach Cam HendersonYear play 1st used:1914Play 1st used by:Bristol high schoolCountry:United States The 2–3 zone defense is a defensive strategy used in basketball as an alternative to man-to-man defense. It is referred to as the 2�...

Glade Designing a preferences dialog in GladeTipealat pemrograman Versi pertamaApril 18, 1998Versi stabil 3.40.0 (10 Agustus 2022) GenreGUI designerLisensiGNU General Public LicenseBagian dariThe GNOME Project (en) Karakteristik teknisSistem operasiCross-platformBahasa pemrogramanC Antarmuka BibliotecaGTK Sumber kode Kode sumberPranala Debianglade Arch Linuxglade Ubuntuglade Gentoodev-util/glade Fedoraglade Informasi tambahanSitus webhttp://glade.gnome.orgPelacakan kesalahanLaman pelacakan Fr...

 

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

 

Benetton GroupJenisSocietà a responsabilità limitataIndustriBusanaDidirikan1965; 59 tahun lalu (1965) di Ponzano Veneto, ItaliaPendiriLuciano Benetton Carlo Benetton Giuliana BenettonKantorpusatPonzano Veneto, ItaliaWilayah operasiDuniaTokohkunciLuciano Benetton (CEO)Tommaso Brusò (Chief Operating Officer)ProdukPakaianSepatuTasAksesoris busanaKaryawan7,714 (2015)Situs webwww.benettongroup.com United Colors of Benetton di Parma, Italia. United Colors of Benetton di Prague, Republik Cek...

Stasiun Cibitung C24 Stasiun Cibitung arah Timur, 2019LokasiJalan Bosih RayaWanasari, Cibitung, Bekasi, Jawa Barat 17521IndonesiaKoordinat6°15′46″S 107°4′49″E / 6.26278°S 107.08028°E / -6.26278; 107.08028Koordinat: 6°15′46″S 107°4′49″E / 6.26278°S 107.08028°E / -6.26278; 107.08028Ketinggian+19 mOperator KAI Commuter Letakkm 36+779 lintas Jakarta–Jatinegara–Cikampek[1] Jumlah peron1 peron pulauJumlah jalur2: ja...

 

周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...

 

etiquette You asked where it says not to change portions of articles under RFC review during an active RFC... I don't have time to dig around WP:RFC, however it's just kinda common sense. If an editor responds to the RFC, and makes comments on version X, and there have been 4 changes since version X, the next editor to respond isn't going to understand other editors' comments and the development of consensus is severely hindered. Beyond that, it's just general wiki etiquette. Not everything ...

County in Heilongjiang, People's Republic of ChinaBaiquan County 拜泉县CountyBaiquanLocation in HeilongjiangCoordinates: 47°35′N 126°01′E / 47.583°N 126.017°E / 47.583; 126.017CountryPeople's Republic of ChinaProvinceHeilongjiangPrefecture-level cityQiqiharTownship-level divisions7 towns9 townshipsCounty seatBaiquan Town (拜泉镇)Area • Total3,569 km2 (1,378 sq mi)Elevation233 m (764 ft)Population • Total570...

 

Election of Pope Innocent II Papal election 1130Dates and location14 February 1130monastery of S. Gregorio, RomeKey officialsDeanPietro SenexElected popeGregorio PapareschiName taken: Innocent II← 11241143 → The 1130 papal election (held February 14) was convoked after the death of Pope Honorius II and resulted in a double election. Part of the cardinals, led by Cardinal-Chancellor Aymeric de la Chatre, elected Gregorio Papareschi as Pope Innocent II, but the rest of them refuse...

 

Sporting event delegationPuerto Rico at the1948 Summer OlympicsIOC codePURNOCPuerto Rico Olympic CommitteeWebsitewww.copur.pr (in Spanish)in LondonCompetitors9 (9 men, 0 women) in 3 sportsFlag bearerJosé ‘Fofó’ Vicente[1]MedalsRanked 34th Gold 0 Silver 0 Bronze 1 Total 1 Summer Olympics appearances (overview)19481952195619601964196819721976198019841988199219962000200420082012201620202024 Puerto Rico competed in the Summer Olympic Games for the first time at the 1948 S...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Deutz AG – berita · surat kabar · buku · cendekiawan · JSTOR (April 2008) Deutz AGJenisAktiengesellschaftKode emitenFWB: DEZIndustriTeknik mesinDidirikan31 Maret 1864; 160 tahun lalu (1864-03-31)PendiriN...

 

4 Heures de Spa 2017 4 Heures de Spa 2017Généralités Sport Endurance Organisateur(s) Automobile Club de l'Ouest Lieu(x) Francorchamps Wallonie Belgique Date Le 24 septembre 2017 Participants 35 Site(s) Circuit de Spa-Francorchamps Palmarès Tenant du titre DragonSpeed Vainqueur Graff Navigation Édition précédente Édition suivante modifier Les 4 Heures de Spa-Francorchamps 2017, disputées le 24 septembre 2017 sur le Circuit de Spa-Francorchamps sont la cinquième manche de l'Euro...

 

In matematica, in particolare in analisi complessa, si definisce funzione meromorfa su un sottoinsieme aperto D {\displaystyle {\mathcal {D}}} del piano complesso una funzione che è olomorfa su tutto D {\displaystyle {\mathcal {D}}} ad esclusione di un insieme di punti isolati che sono poli della funzione stessa. Ogni funzione meromorfa su D {\displaystyle {\mathcal {D}}} può essere espressa come rapporto di due funzioni olomorfe (con la funzione denominatore diversa dalla costante 0) defin...

Liste des sportifs kényans (par sport et par chronologie) médaillés d'or lors des Jeux olympiques d'été et d'hiver, à titre individuel ou par équipe, de 1956 à 2008. Jeux olympiques d'été Athlétisme Nom Discipline(s) Année(s) Kipchoge Keino 1 500 m (H) 1968 Naftali Temu 10 000 m (H) 1968 Amos Biwott 3 000 m steeple (H) 1968 Kipchoge Keino 3 000 m steeple (H) 1972 Charles AsatiHezahiah NyamauRobert OukoJulius Sang Relais 4 × 400 m (H) 1972 Julius Korir 3&#...

 

School or college, often providing an Islamic education Not to be confused with Madras, Madrasi, or Madrasta. Madraseh, Medrese, and Madraza redirect here. For other uses, see Madrasa (disambiguation). The three madrasas at the Registan of Samarkand, built during the Timurid Renaissance Part of a series onIslam Beliefs Oneness of God Angels Revealed Books Prophets Day of Resurrection Predestination Practices Profession of Faith Prayer Almsgiving Fasting Pilgrimage TextsFoundations Quran Sunna...