Permanent (mathematics)

In linear algebra, the permanent of a square matrix is a function of the matrix similar to the determinant. The permanent, as well as the determinant, is a polynomial in the entries of the matrix.[1] Both are special cases of a more general function of a matrix called the immanant.

Definition

The permanent of an n×n matrix A = (ai,j) is defined as

The sum here extends over all elements σ of the symmetric group Sn; i.e. over all permutations of the numbers 1, 2, ..., n.

For example,

and

The definition of the permanent of A differs from that of the determinant of A in that the signatures of the permutations are not taken into account.

The permanent of a matrix A is denoted per A, perm A, or Per A, sometimes with parentheses around the argument. Minc uses Per(A) for the permanent of rectangular matrices, and per(A) when A is a square matrix.[2] Muir and Metzler use the notation .[3]

The word, permanent, originated with Cauchy in 1812 as “fonctions symétriques permanentes” for a related type of function,[4] and was used by Muir and Metzler[5] in the modern, more specific, sense.[6]

Properties

If one views the permanent as a map that takes n vectors as arguments, then it is a multilinear map and it is symmetric (meaning that any order of the vectors results in the same permanent). Furthermore, given a square matrix of order n:[7]

  • perm(A) is invariant under arbitrary permutations of the rows and/or columns of A. This property may be written symbolically as perm(A) = perm(PAQ) for any appropriately sized permutation matrices P and Q,
  • multiplying any single row or column of A by a scalar s changes perm(A) to s⋅perm(A),
  • perm(A) is invariant under transposition, that is, perm(A) = perm(AT).
  • If and are square matrices of order n then,[8] where s and t are subsets of the same size of {1,2,...,n} and are their respective complements in that set.
  • If is a triangular matrix, i.e. , whenever or, alternatively, whenever , then its permanent (and determinant as well) equals the product of the diagonal entries:

Relation to determinants

Laplace's expansion by minors for computing the determinant along a row, column or diagonal extends to the permanent by ignoring all signs.[9]

For every ,

where is the entry of the ith row and the jth column of B, and is the permanent of the submatrix obtained by removing the ith row and the jth column of B.

For example, expanding along the first column,

while expanding along the last row gives,

On the other hand, the basic multiplicative property of determinants is not valid for permanents.[10] A simple example shows that this is so.

Unlike the determinant, the permanent has no easy geometrical interpretation; it is mainly used in combinatorics, in treating boson Green's functions in quantum field theory, and in determining state probabilities of boson sampling systems.[11] However, it has two graph-theoretic interpretations: as the sum of weights of cycle covers of a directed graph, and as the sum of weights of perfect matchings in a bipartite graph.

Applications

Symmetric tensors

The permanent arises naturally in the study of the symmetric tensor power of Hilbert spaces.[12] In particular, for a Hilbert space , let denote the th symmetric tensor power of , which is the space of symmetric tensors. Note in particular that is spanned by the symmetric products of elements in . For , we define the symmetric product of these elements by If we consider (as a subspace of , the kth tensor power of ) and define the inner product on accordingly, we find that for Applying the Cauchy–Schwarz inequality, we find that , and that

Cycle covers

Any square matrix can be viewed as the adjacency matrix of a weighted directed graph on vertex set , with representing the weight of the arc from vertex i to vertex j. A cycle cover of a weighted directed graph is a collection of vertex-disjoint directed cycles in the digraph that covers all vertices in the graph. Thus, each vertex i in the digraph has a unique "successor" in the cycle cover, and so represents a permutation on V. Conversely, any permutation on V corresponds to a cycle cover with arcs from each vertex i to vertex .

If the weight of a cycle-cover is defined to be the product of the weights of the arcs in each cycle, then implying that Thus the permanent of A is equal to the sum of the weights of all cycle-covers of the digraph.

Perfect matchings

A square matrix can also be viewed as the adjacency matrix of a bipartite graph which has vertices on one side and on the other side, with representing the weight of the edge from vertex to vertex . If the weight of a perfect matching that matches to is defined to be the product of the weights of the edges in the matching, then Thus the permanent of A is equal to the sum of the weights of all perfect matchings of the graph.

Permanents of (0, 1) matrices

Enumeration

The answers to many counting questions can be computed as permanents of matrices that only have 0 and 1 as entries.

Let Ω(n,k) be the class of all (0, 1)-matrices of order n with each row and column sum equal to k. Every matrix A in this class has perm(A) > 0.[13] The incidence matrices of projective planes are in the class Ω(n2 + n + 1, n + 1) for n an integer > 1. The permanents corresponding to the smallest projective planes have been calculated. For n = 2, 3, and 4 the values are 24, 3852 and 18,534,400 respectively.[13] Let Z be the incidence matrix of the projective plane with n = 2, the Fano plane. Remarkably, perm(Z) = 24 = |det (Z)|, the absolute value of the determinant of Z. This is a consequence of Z being a circulant matrix and the theorem:[14]

If A is a circulant matrix in the class Ω(n,k) then if k > 3, perm(A) > |det (A)| and if k = 3, perm(A) = |det (A)|. Furthermore, when k = 3, by permuting rows and columns, A can be put into the form of a direct sum of e copies of the matrix Z and consequently, n = 7e and perm(A) = 24e.

Permanents can also be used to calculate the number of permutations with restricted (prohibited) positions. For the standard n-set {1, 2, ..., n}, let be the (0, 1)-matrix where aij = 1 if i → j is allowed in a permutation and aij = 0 otherwise. Then perm(A) is equal to the number of permutations of the n-set that satisfy all the restrictions.[9] Two well known special cases of this are the solution of the derangement problem and the ménage problem: the number of permutations of an n-set with no fixed points (derangements) is given by

where J is the n×n all 1's matrix and I is the identity matrix, and the ménage numbers are given by

where I' is the (0, 1)-matrix with nonzero entries in positions (i, i + 1) and (n, 1).

Bounds

The Bregman–Minc inequality, conjectured by H. Minc in 1963[15] and proved by L. M. Brégman in 1973,[16] gives an upper bound for the permanent of an n × n (0, 1)-matrix. If A has ri ones in row i for each 1 ≤ in, the inequality states that

Van der Waerden's conjecture

In 1926, Van der Waerden conjectured that the minimum permanent among all n × n doubly stochastic matrices is n!/nn, achieved by the matrix for which all entries are equal to 1/n.[17] Proofs of this conjecture were published in 1980 by B. Gyires[18] and in 1981 by G. P. Egorychev[19] and D. I. Falikman;[20] Egorychev's proof is an application of the Alexandrov–Fenchel inequality.[21] For this work, Egorychev and Falikman won the Fulkerson Prize in 1982.[22]

Computation

The naïve approach, using the definition, of computing permanents is computationally infeasible even for relatively small matrices. One of the fastest known algorithms is due to H. J. Ryser.[23] Ryser's method is based on an inclusion–exclusion formula that can be given[24] as follows: Let be obtained from A by deleting k columns, let be the product of the row-sums of , and let be the sum of the values of over all possible . Then

It may be rewritten in terms of the matrix entries as follows:

The permanent is believed to be more difficult to compute than the determinant. While the determinant can be computed in polynomial time by Gaussian elimination, Gaussian elimination cannot be used to compute the permanent. Moreover, computing the permanent of a (0,1)-matrix is #P-complete. Thus, if the permanent can be computed in polynomial time by any method, then FP = #P, which is an even stronger statement than P = NP. When the entries of A are nonnegative, however, the permanent can be computed approximately in probabilistic polynomial time, up to an error of , where is the value of the permanent and is arbitrary.[25] The permanent of a certain set of positive semidefinite matrices is NP-hard to approximate within any subexponential factor.[26] If further conditions on the spectrum are imposed, the permanent can be approximated in probabilistic polynomial time: the best achievable error of this approximation is ( is again the value of the permanent).[27] The hardness in these instances is closely linked with difficulty of simulating boson sampling experiments.

MacMahon's master theorem

Another way to view permanents is via multivariate generating functions. Let be a square matrix of order n. Consider the multivariate generating function: The coefficient of in is perm(A).[28]

As a generalization, for any sequence of n non-negative integers, define: as the coefficient of in

MacMahon's master theorem relating permanents and determinants is:[29] where I is the order n identity matrix and X is the diagonal matrix with diagonal

Rectangular matrices

The permanent function can be generalized to apply to non-square matrices. Indeed, several authors make this the definition of a permanent and consider the restriction to square matrices a special case.[30] Specifically, for an m × n matrix with m ≤ n, define where P(n,m) is the set of all m-permutations of the n-set {1,2,...,n}.[31]

Ryser's computational result for permanents also generalizes. If A is an m × n matrix with m ≤ n, let be obtained from A by deleting k columns, let be the product of the row-sums of , and let be the sum of the values of over all possible . Then[10]

Systems of distinct representatives

The generalization of the definition of a permanent to non-square matrices allows the concept to be used in a more natural way in some applications. For instance:

Let S1, S2, ..., Sm be subsets (not necessarily distinct) of an n-set with m ≤ n. The incidence matrix of this collection of subsets is an m × n (0,1)-matrix A. The number of systems of distinct representatives (SDR's) of this collection is perm(A).[32]

See also

Notes

  1. ^ Marcus, Marvin; Minc, Henryk (1965). "Permanents". Amer. Math. Monthly. 72 (6): 577–591. doi:10.2307/2313846. JSTOR 2313846.
  2. ^ Minc (1978)
  3. ^ Muir & Metzler (1960)
  4. ^ Cauchy, A. L. (1815), "Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu'elles renferment.", Journal de l'École Polytechnique, 10: 91–169
  5. ^ Muir & Metzler (1960)
  6. ^ van Lint & Wilson 2001, p. 108
  7. ^ Ryser 1963, pp. 25 – 26
  8. ^ Percus 1971, p. 2
  9. ^ a b Percus 1971, p. 12
  10. ^ a b Ryser 1963, p. 26
  11. ^ Aaronson, Scott (14 Nov 2010). "The Computational Complexity of Linear Optics". arXiv:1011.3245 [quant-ph].
  12. ^ Bhatia, Rajendra (1997). Matrix Analysis. New York: Springer-Verlag. pp. 16–19. ISBN 978-0-387-94846-1.
  13. ^ a b Ryser 1963, p. 124
  14. ^ Ryser 1963, p. 125
  15. ^ Minc, Henryk (1963), "Upper bounds for permanents of (0,1)-matrices", Bulletin of the American Mathematical Society, 69 (6): 789–791, doi:10.1090/s0002-9904-1963-11031-9
  16. ^ van Lint & Wilson 2001, p. 101
  17. ^ van der Waerden, B. L. (1926), "Aufgabe 45", Jber. Deutsch. Math.-Verein., 35: 117.
  18. ^ Gyires, B. (2022), "The common source of several inequalities concerning doubly stochastic matrices", Publicationes Mathematicae Institutum Mathematicum Universitatis Debreceniensis, 27 (3–4): 291–304, doi:10.5486/PMD.1980.27.3-4.15, MR 0604006.
  19. ^ Egoryčev, G. P. (1980), Reshenie problemy van-der-Vardena dlya permanentov (in Russian), Krasnoyarsk: Akad. Nauk SSSR Sibirsk. Otdel. Inst. Fiz., p. 12, MR 0602332. Egorychev, G. P. (1981), "Proof of the van der Waerden conjecture for permanents", Akademiya Nauk SSSR (in Russian), 22 (6): 65–71, 225, MR 0638007. Egorychev, G. P. (1981), "The solution of van der Waerden's problem for permanents", Advances in Mathematics, 42 (3): 299–305, doi:10.1016/0001-8708(81)90044-X, MR 0642395.
  20. ^ Falikman, D. I. (1981), "Proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix", Akademiya Nauk Soyuza SSR (in Russian), 29 (6): 931–938, 957, MR 0625097.
  21. ^ Brualdi (2006) p.487
  22. ^ Fulkerson Prize, Mathematical Optimization Society, retrieved 2012-08-19.
  23. ^ Ryser (1963, p. 27)
  24. ^ van Lint & Wilson (2001) p. 99
  25. ^ Jerrum, M.; Sinclair, A.; Vigoda, E. (2004), "A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries", Journal of the ACM, 51 (4): 671–697, CiteSeerX 10.1.1.18.9466, doi:10.1145/1008731.1008738, S2CID 47361920
  26. ^ Meiburg, Alexander (2023). "Inapproximability of Positive Semidefinite Permanents and Quantum State Tomography". Algorithmica. 85 (12): 3828–3854. arXiv:2111.03142. doi:10.1007/s00453-023-01169-1.
  27. ^ Chakhmakhchyan, Levon; Cerf, Nicolas; Garcia-Patron, Raul (2017). "A quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices". Phys. Rev. A. 96 (2): 022329. arXiv:1609.02416. Bibcode:2017PhRvA..96b2329C. doi:10.1103/PhysRevA.96.022329. S2CID 54194194.
  28. ^ Percus 1971, p. 14
  29. ^ Percus 1971, p. 17
  30. ^ In particular, Minc (1978) and Ryser (1963) do this.
  31. ^ Ryser 1963, p. 25
  32. ^ Ryser 1963, p. 54

References

Further reading

Read other articles:

Zagreb Open  ATP Challenger Tour Nama turnamenZagrebLokasiZagreb, KroasiaTempatŠportski Park MladostKategoriATP Challenger TourPermukaanTanah liat merahJumlah peserta32T/32K/16GHadiah uang€50,000+HSitus webwww.zagrebopen.hr Christophe Rochus (BEL) mengalahkan Carlos Berlocq di final tahun 2008 Janko Tipsarević dari Serbia menjadi juara tahun 2007 Juara kedua tunggal 1997 dan juara ganda 1999 Ivan Ljubičić merupakan orang Kroasia pertama yang memenangkan kategori tunggal tahun 2005...

 

 

الأسرة المصرية الحادية والعشرون قناع الذهب الجنائزي للفرعون بسوسينيس الأول الأرض والسكان الحكم التأسيس والسيادة التاريخ تاريخ التأسيس 1077 ق.م  وسيط property غير متوفر. تعديل مصدري - تعديل   أسر مصر القديمة الأسر المبكرة • الأسرة الأولى (ح. 3050 – 2890 ق.م) • الأسرة الثانية (2890�...

 

 

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

Organelle in eukaryotic cells responsible for respiration Mitochondria redirects here. For the song by Kenichi Suzumura, see Mitochondria (song). For the Canadian band, see Mitochondrion (band). Two mitochondria from mammalian lung tissue displaying their matrix and membranes as shown by electron microscopyA mitochondrion (/ˌmaɪtəˈkɒndriən/;[1] pl.: mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double ...

 

 

Перуанский анчоус Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые �...

 

 

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...

KytePenemuanDitemukan olehR. MatsonSitus penemuanHaleakalaTanggal penemuan9 September 2002PenamaanPenamaan MPC84224Penamaan alternatif2002 RB233Ciri-ciri orbitEpos 14 Mei 2008Aphelion2.4642929Perihelion2.0698421Eksentrisitas0.0869958Periode orbit1246.7951736Anomali rata-rata113.24900Inklinasi5.95957Bujur node menaik141.25960Argumen perihelion339.33411Ciri-ciri fisikMagnitudo mutlak (H)16.5 84224 Kyte (2002 RB233) adalah sebuah asteroid yang terletak di sabuk utam...

 

 

Indian actress and producer (1937 – 2023) LeelavathiLeelavathi at Kalamandira, MysoreBornLeena Sequeira1937Mangalore, Madras Province, British IndiaDied8 December 2023 (aged 86)Nelamangala, Bangalore Rural district, Karnataka, IndiaOccupation(s)Actress, film producer, writer, philanthropist[1]ChildrenVinod Raj Leena Sequeira[2] (1937 – 8 December 2023), known mononymously as Leelavathi, was an Indian actress, producer and philanthropist who worked predominantly in Kan...

 

 

District of Hong Kong This article is about the administrative district. For the area, see Wan Chai. District in Hong Kong, ChinaWan Chai 灣仔區DistrictDay view of Wan Chai DistrictWan ChaiLocation in Hong KongShow map of Hong KongWan ChaiWan Chai (Asia)Show map of AsiaCoordinates: 22°16′47″N 114°10′18″E / 22.27968°N 114.17168°E / 22.27968; 114.17168CountryChinaSARHong KongRegionHong Kong IslandConstituencies11Government • District Council Ch...

Canadian junior ice hockey team Hamilton FincupsCityHamilton, OntarioLeagueOntario Major Junior Hockey LeagueOperated1974 (1974)–78ColoursBlue, white and goldFranchise history1946–1953Windsor Spitfires1953–1960Hamilton Tiger Cubs1960–1974Hamilton Red Wings1974–1978Hamilton/St. Catharines Fincups1978–1984Brantford Alexanders1984–1988Hamilton Steelhawks1988–1996Niagara Falls Thunder1996–presentErie OttersChampionshipsPlayoff championships1976 Memorial Cup Champions The Ha...

 

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

 

「アプリケーション」はこの項目へ転送されています。英語の意味については「wikt:応用」、「wikt:application」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年4月) 古い情報を更新する必要があります。(2021年3月)出...

「アプリケーション」はこの項目へ転送されています。英語の意味については「wikt:応用」、「wikt:application」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年4月) 古い情報を更新する必要があります。(2021年3月)出...

 

 

Marie Taglioni dans le rôle-titre de La Sylphide. Le ballet romantique apparaît au début du XIXe siècle (période romantique), et succède au ballet d'action dont Jean-Georges Noverre fut le grand théoricien. La période du ballet romantique dure une trentaine d'années, de 1815 à 1845-1850. Le romantisme, apparu à la fin du XVIIIe siècle en Allemagne (Goethe et Schiller) et en Grande-Bretagne (Walter Scott et Lord Byron), se répand dans toute l'Europe au début du XIXe...

 

 

United Nations resolution adopted in 2011 UN Security CouncilResolution 1993Resolution 1993 called for the arrest of Goran HadžićDate29 June 2011Meeting no.6,571CodeS/RES/1993 (Document)SubjectInternational Tribunal for the former YugoslaviaVoting summary15 voted forNone voted againstNone abstainedResultAdoptedSecurity Council compositionPermanent members China France Russia United Kingdom United StatesNon-permanent members Bosnia–Herzegovina Brazil...

1936 anti-fascist confrontation in London For the 1911 gunfight known as the Battle of Stepney, see Siege of Sidney Street. Battle of Cable StreetFlyer distributed by the London branch of the Communist Party of Great BritainDate4 October 1936LocationCable Street, Whitechapel, London, United Kingdom51°30′39″N 0°03′08″W / 51.5109°N 0.0521°W / 51.5109; -0.0521Caused byOpposition to a fascist march through East LondonMethodsProtestParties British Union of Fasci...

 

 

Black CloverGambar sampul manga volume pertamaブラッククローバー(Burakku Kurōbā)GenrePetualangan, fantasi[1] MangaPengarangYūki TabataPenerbitShueishaPenerbit bahasa InggrisNA Viz MediaPenerbit bahasa IndonesiaElex Media KomputindoImprintJump ComicsMajalahWeekly Shōnen Jump (16 Februari 2015 – 21 Agustus 2023)Jump Giga (25 Desember 2023–sekarang)Majalah bahasa InggrisNA Weekly Shonen JumpDemografiShōnenTerbit16 Februari 2015 – sekarangVolume36 (Daftar volume) Video...

 

 

  关于与「陈毅」標題相近或相同的条目页,請見「陈毅 (消歧義)」。 陈毅陈世俊 中华人民共和国国务院副总理任期1954年9月—1972年1月总理周恩来 中华人民共和国外交部部长任期1958年2月—1972年1月前任周恩來继任姬鹏飞 中华人民共和国上海市人民政府市长任期1949年5月—1958年11月前任赵祖康(上海市政府代市长)继任柯庆施 个人资料性别男字仲弘出生(...

.bg

.bg البلد بلغاريا  الموقع الموقع الرسمي  تعديل مصدري - تعديل   bg. هو نطاق إنترنت من صِنف مستوى النطاقات العُليا في ترميز الدول والمناطق، للمواقع التي تنتمي لبلغاريا.[1][2] مراجع ^ النطاق الأعلى في ترميز الدولة (بالإنجليزية). ORSN [الإنجليزية]. Archived from the original on 2019-05-07....

 

 

Village in Kerala, IndiaPidavoorvillagePidavoorLocation in Kerala, IndiaShow map of KeralaPidavoorPidavoor (India)Show map of IndiaCoordinates: 9°4′0″N 76°51′0″E / 9.06667°N 76.85000°E / 9.06667; 76.85000Country IndiaStateKeralaDistrictKollamPopulation (2001) • Total10,087Languages • OfficialMalayalam, EnglishTime zoneUTC+5:30 (IST)Vehicle registrationKL-Coastline0 kilometres (0 mi)ClimateTropical monsoon (Köppen)Avg...